【題目】已知,在中,,,DAC邊上的一個(gè)動(dòng)點(diǎn),將沿BD所在直線折疊,使點(diǎn)A落在點(diǎn)E處.

如圖,若點(diǎn)DAC的中點(diǎn),連接求證:四邊形BCED是平行四邊形;

如圖,若,求的值.

【答案】(1)證明見(jiàn)解析;(2).

【解析】

(1)根據(jù)直角三角形的性質(zhì)得到AD=CD=4=BC,根據(jù)翻轉(zhuǎn)變換的性質(zhì)得到DE=AD=4,∠EDB=∠ADB=135°,根據(jù)平行四邊形的判定定理證明;

(2)連接AE,分別過(guò)點(diǎn)DDF⊥AB于點(diǎn)F,過(guò)點(diǎn)EEM⊥AC于點(diǎn)M,作EN⊥BC,交BC的延長(zhǎng)線于點(diǎn)N,延長(zhǎng)BDAE于點(diǎn)G,根據(jù)勾股定理分別求出BD、AB,根據(jù)正弦的定義計(jì)算即可.

證明:在中,,,點(diǎn)DAC的中點(diǎn),

,

是等腰直角三角形,

,

由折疊得:,

,

,

,又,

四邊形BCED是平行四邊形;

解:如圖,連接AE,分別過(guò)點(diǎn)D于點(diǎn)F,過(guò)點(diǎn)E于點(diǎn)M

,交BC的延長(zhǎng)線于點(diǎn)N,延長(zhǎng)BDAE于點(diǎn)G,

為等腰三角形,

設(shè),則,

中,由勾股定理得:,

,即,

中,,

,

,,

中,,

,可得

,又,

,

,可得

,

,

四邊形EMCN是矩形,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖,在正方形ABCD中,對(duì)角線AC、BD相交于O,E、F分別在OD、OC上,且DE=CF,連結(jié)DF、AE,AE的延長(zhǎng)線交于DF于點(diǎn)M,求證:AMDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,AB=AC,CD是∠ACB的平分線,DEBC,交AC于點(diǎn) E

1)求證:DE=CE

2)若∠CDE=25°,求∠A 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC=5,線段AB的垂直平分線DE分別交邊ABAC于點(diǎn)E、D


1)若∠A=40°,求∠DBC的度數(shù);
2)若△BCD的周長(zhǎng)為8,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?

2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,該校有幾種購(gòu)買方案?

3)上面的哪種方案費(fèi)用最低?按費(fèi)用最低方案購(gòu)買需要多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)(得分?jǐn)?shù)取正整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),繪制統(tǒng)計(jì)圖如下(未全完成),已知組的頻數(shù)比組小,解答下列問(wèn)題:

1)求樣本容量及頻數(shù)分布直方圖中的的值;

2)扇形統(tǒng)計(jì)圖中,部分所對(duì)的圓心角為,求的值并補(bǔ)全頻數(shù)分布直方圖;

3)若成績(jī)?cè)?/span>分以上優(yōu)秀,全校共有名學(xué)生估計(jì)成績(jī)優(yōu)秀的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò),兩點(diǎn),與x軸交于另一點(diǎn)B

求此拋物線的解析式;

若拋物線的頂點(diǎn)為M,點(diǎn)P為線段OB上一動(dòng)點(diǎn)不與點(diǎn)B重合,點(diǎn)Q在線段MB上移動(dòng),且,設(shè)線段,,求x的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;

在同一平面直角坐標(biāo)系中,兩條直線分別與拋物線交于點(diǎn)E、G,與中的函數(shù)圖象交于點(diǎn)F、問(wèn)四邊形EFHG能否成為平行四邊形?若能,求m、n之間的數(shù)量關(guān)系;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知在中,BE平分AC于點(diǎn)E,AB于點(diǎn)D,,則的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)夫?qū)⑻O(píng)果樹(shù)種在正方形的果園內(nèi),為了保護(hù)蘋(píng)果樹(shù)不受風(fēng)吹,他在蘋(píng)果樹(shù)的周圍種上針葉樹(shù).在下圖里,你可以看到農(nóng)夫所種植蘋(píng)果樹(shù)的列數(shù)(n)和蘋(píng)果樹(shù)數(shù)量及針葉樹(shù)數(shù)量的規(guī)律:當(dāng)n為某一個(gè)數(shù)值時(shí),蘋(píng)果樹(shù)數(shù)量會(huì)等于針葉樹(shù)數(shù)量,則n(  )

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

同步練習(xí)冊(cè)答案