【題目】已知函數(shù)f(x)=xlnx﹣ x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求實數(shù)a的取值范圍;
(2)若函數(shù)g(x)=f(x)﹣x有兩個相異極值點x1、x2 , 求證: + >2ae.

【答案】
(1)解:x>0,恒有f(x)≤x成立,

∴xlnx﹣ x2≤x恒成立,∴

設g(x)= ,∴g′(x)=

當g′(x)>0時,即0<x<e2,函數(shù)g(x)單調遞增,

當g′(x)<0時,即x>e2,函數(shù)g(x)單調遞減,

∴g(x)max=g(e2)=

,∴a≥

∴實數(shù)a的取值范圍為[ ,+∞)


(2)解:g′(x)=f(x)′﹣1=lnx﹣ax,函數(shù)g(x)=f(x)﹣x有兩個極值點x1、x2

即g′(x)=lnx﹣ax=0有兩個不同的實根,

當a≤0時,g′(x)單調遞增,g′(x)=0不可能有兩個不同的實根;

當a>0時,設h(x)=lnx﹣ax,

∴h′(x)= ,

若0<x< 時,h′(x)>0,h(x)單調遞增,

若x> 時,h′(x)<0,h(x)單調遞減,

∴h( )=﹣lna﹣1>0,

∴0<a<

不妨設x2>x1>0,

∵g′(x1)=g′(x2)=0,

∴l(xiāng)nx1﹣ax1=0,lnx2﹣ax2=0,lnx1﹣lnx2=a(x1﹣x2),

先證 + >2,即證 ,

即證ln =

=t,即證lnt< (t﹣

設φ(t)=lnt﹣ (t﹣ ),則φ′(t)=﹣ <0,

函數(shù)φ(t)在(1,+∞)上單調遞減,

∴φ(t)<φ(1)=0,

+ >2,

又∵0<a< ,∴ae<1,

+ >2ae


【解析】(1)分離參數(shù),構造函數(shù),利用導數(shù)求出函數(shù)的最值即可,(2)函數(shù)g(x)=f(x)﹣x有兩個極值點x1、x2 , 即導函數(shù)g′(x)有兩個不同的實數(shù)根x1、x2 , 對a進行分類討論,令 =t,構造函數(shù)φ(t),利用函數(shù)φ(t)的單調性證明不等式.
【考點精析】根據(jù)題目的已知條件,利用利用導數(shù)研究函數(shù)的單調性和函數(shù)的極值與導數(shù)的相關知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交ABM,交ACN

1)若∠ABC=70°,則∠MNA的度數(shù)是__

2)連接NB,若AB=8cm,NBC的周長是14cm

BC的長;

在直線MN上是否存在P,使由P、BC構成的△PBC的周長值最?若存在,標出點P的位置并求△PBC的周長最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為,且滿足
(1)求角A的大;
(2)若D為BC上一點,且 ,求a.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,
(1)求證:BC⊥平面ACFE;
(2)點M在線段EF上運動,設平面MAB與平面FCB二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)列{an}中,a2n=a2n﹣1+(﹣1)n , a2n+1=a2n+n,a1=1則a100=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在(0,+∞)上的單調函數(shù),且對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,則方程f(x)﹣f′(x)=2的解所在的區(qū)間是(
A.(0,
B.( ,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,曲線C由上半橢圓 和部分拋物線 連接而成,C1與C2的公共點為A,B,其中C1的離心率為

(1)求a,b的值;
(2)過點B的直線l與C1 , C2分別交于點P,Q(均異于點A,B),是否存在直線l,使得PQ為直徑的圓恰好過點A,若存在直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某調查機構將今年溫州市民最關注的熱點話題分為消費、教育、環(huán)保、反腐及其它共五類.根據(jù)最近一次隨機調查的相關數(shù)據(jù),繪制的統(tǒng)計圖表如下:
根據(jù)以上信息解答下列問題:
(1)本次共調查人 ,請在補全條形統(tǒng)計圖并標出相應數(shù)據(jù)
(2)若溫州市約有900萬人口,請你估計最關注教育問題的人數(shù)約為多少萬人?
(3)在這次調查中,某單位共有甲、乙、丙、丁四人最關注教育問題,現(xiàn)準備從這四人中隨機抽取兩人進行座談,求抽取的兩人恰好是甲和乙的概率(列樹狀圖或列表說明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為節(jié)約水資源,制定了新的居民用水收費標準.按照新標準,用戶每月繳納的水費y(元)與每月用水量x(m3)之間的關系如圖所示.

(1)求y關于x的函數(shù)解析式;

(2)若某用戶二、三月份共用水40m3(二月份用水量不超過25m3),繳納水費79.8元,則該用戶二、三月份的用水量各是多少m3?

查看答案和解析>>

同步練習冊答案