【題目】如圖,AB是⊙O的直徑,弦EFAB于點(diǎn)C,點(diǎn)DAB延長(zhǎng)線上一點(diǎn),∠A30°,∠D30°

1)求證:FD是⊙O的切線;

2)取BE的中點(diǎn)M,連接MF,若⊙O的半徑為2,求MF的長(zhǎng).

【答案】1)見(jiàn)解析;(2MF.

【解析】

1)如圖,連接OEOF,由垂徑定理可知,根據(jù)圓周角定理可求出∠DOF=60°,根據(jù)三角形內(nèi)角和定理可得∠OFD=90°,即可得FD為⊙O的切線;(2)如圖,連接OM,由中位線的性質(zhì)可得OM//AE,根據(jù)平行線的性質(zhì)可得∠MOB=∠A30°,根據(jù)垂徑定理可得OMBE,根據(jù)含30°角的直角三角形的性質(zhì)可求出BE的長(zhǎng),利用勾股定理可求出OM的長(zhǎng),根據(jù)三角形內(nèi)角和可得∠DOF=60°,即可求出∠MOF=90°,利用勾股定理求出MF的長(zhǎng)即可.

1)如圖,連接OE,OF

EFAB,AB是⊙O的直徑,

∴∠DOF=∠DOE,

∵∠DOE2A,∠A30°,

∴∠DOF60°,

∵∠D30°,

∴∠OFD90°,

OFFD

FD為⊙O的切線.

2)如圖,連接OM,MF,

OAB中點(diǎn),MBE中點(diǎn),

OMAE

∴∠MOB=∠A30°

OM過(guò)圓心,MBE中點(diǎn),

OMBE

MB=OB=1

OM==

∵∠OFD=90°,∠D=30°,

∴∠DOF60°,

∴∠MOF=∠DOF+MOB=90°,

MF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù),對(duì)于任意的函數(shù)值,都滿足,則稱這個(gè)函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個(gè)函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)的邊界值是2,且這個(gè)函數(shù)的最大值也是2,求的取值范圍;

3)將函數(shù)的圖象向下平移個(gè)單位,得到的函數(shù)的邊界值是,當(dāng)在什么范圍時(shí),滿足?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20179月,我國(guó)中小學(xué)生迎來(lái)了新版教育部統(tǒng)編義務(wù)教育語(yǔ)文教科書,本次統(tǒng)編本教材最引人關(guān)注的變化之一是強(qiáng)調(diào)對(duì)傳統(tǒng)文化經(jīng)典著作的閱讀,某校對(duì)A《三國(guó)演義》、B《紅樓夢(mèng)》、C《西游記》、D《水滸》四大名著開(kāi)展最受歡迎的傳統(tǒng)文化經(jīng)典著作調(diào)查,隨機(jī)調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計(jì)圖:

(1)本次一共調(diào)查了   名學(xué)生;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)某班語(yǔ)文老師想從這四大名著中隨機(jī)選取兩部作為學(xué)生暑期必讀書籍,請(qǐng)用樹(shù)狀圖或列表的方法求恰好選中《三國(guó)演義》和《紅樓夢(mèng)》的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中的兩個(gè)圖形MN,給出如下定義:P為圖形M上任意一點(diǎn),Q為圖形N上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形M,N間的和睦距離,記作dM,N).若圖形MN有公共點(diǎn),則dM,N)=0

1)如圖,A0,1),C3,4),⊙C的半徑為2,則dC,⊙C)=   ,dO,⊙C)=   ;

2)已知,如圖,△ABC的一邊ACx軸上,By軸上,且AC8,AB7,BC5

D是△ABC內(nèi)一點(diǎn),若AC、BC分別切⊙DE、F,且dC,D)=2dDAB),判斷AB與⊙D的位置關(guān)系,并求出D點(diǎn)的坐標(biāo);

②若以r為半徑,①中的D為圓心的⊙D,有dB,⊙D)>1dC,⊙D)<2,直接寫出r的取值范圍   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,ABC的三個(gè)頂點(diǎn)分別為A(-3,4),B(-5,1),C(-1,2).

1)畫出ABC關(guān)于原點(diǎn)對(duì)稱的A1B1C1,并寫出點(diǎn)B1的坐標(biāo);

2)畫出ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后的A2B2C2,并寫出點(diǎn)B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了計(jì)算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測(cè)得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點(diǎn)B處,再次測(cè)得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD(四邊相等、四內(nèi)角相等)中,AD5,點(diǎn)E、F是正方形ABCD內(nèi)的兩點(diǎn),且AEFC4BEDF3,則EF的平方為(  )

A.2B.C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段 AC=4,線段BC繞點(diǎn)C旋轉(zhuǎn),且BC=6,連結(jié)AB,以AB為邊作正方形ADEB,連結(jié)CD.

(1)若∠ACB=90°,則AB的值是____;

(2)線段CD長(zhǎng)的最大值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,若直線ly=2x+4x軸于點(diǎn)A、交y軸于點(diǎn)B,將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到△COD.過(guò)點(diǎn)AB,D的拋物線hy=ax2+bx+4

(1)求拋物線h的表達(dá)式;

(2)若與y軸平行的直線m1秒鐘一個(gè)單位長(zhǎng)的速度從y軸向左平移,交線段CD于點(diǎn)M、交拋物線h于點(diǎn)N,求線段MN的最大值;

(3)如圖②,點(diǎn)E為拋物線h的頂點(diǎn),點(diǎn)P是拋物線h在第二象限的上一動(dòng)點(diǎn)(不與點(diǎn)DB重合),連接PE,以PE為邊作圖示一側(cè)的正方形PEFG.隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變,當(dāng)頂點(diǎn)FG恰好落在y軸上時(shí),直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案