【題目】如圖,點(diǎn)D是△ABC的邊AB上一點(diǎn),點(diǎn)EAC的中點(diǎn),過(guò)點(diǎn)CCFABDE延長(zhǎng)線于點(diǎn)F

1)求證:ADCF

2)連接AF,CD,求證:四邊形ADCF為平行四邊形.

【答案】1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

【解析】

1)根據(jù)CFAB就可以得出∠A=∠ECF,∠ADE=∠F,證明△ADE≌△CFE就可以求出結(jié)論;

2)由△ADE≌△CFE就可以得出DEFE,又有AECE于是就得出結(jié)論.

解:(1)證明:∵CFAB,

∴∠ADE=∠F,∠FCE=∠A

∵點(diǎn)EAC的中點(diǎn),

AEEC

∵在△ADE和△CFE中,

,

∴△ADE≌△CFEAAS).

ADCF;

2)∵△ADE≌△CFE

DEFE

AEEC,

∴四邊形ADCF為平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,BAC=90°,分別以 AC BC 為邊向外作正方形 ACFG 和正方形 BCDE,過(guò)點(diǎn) D FC 的延長(zhǎng)線的垂線,垂足為點(diǎn) H

(1)求證:ABC≌△HDC

(2)連接 FD, AC 的延長(zhǎng)線于點(diǎn) M, AG ,tanABC,FCM 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李航想利用太陽(yáng)光測(cè)量樓高.他帶著皮尺來(lái)到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:如示意圖,李航邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點(diǎn)A、E、C在同一直線上).已知李航的身高EF1.6m,請(qǐng)你幫李航求出樓高AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線、軸分別交于、兩點(diǎn).點(diǎn)為線段的中點(diǎn).過(guò)點(diǎn)作直線軸于點(diǎn)

(1)直接寫(xiě)出的坐標(biāo);

(2)如圖1,點(diǎn)是直線上的動(dòng)點(diǎn),連接、,線段在直線上運(yùn)動(dòng),記為,點(diǎn)軸上的動(dòng)點(diǎn),連接點(diǎn)、,當(dāng)取最大時(shí),求的最小值;

(3)如圖2,在軸正半軸取點(diǎn),使得,以為直角邊在軸右側(cè)作直角,且,作的角平分線,將沿射線方向平移,點(diǎn)、平移后的對(duì)應(yīng)點(diǎn)分別記作、,當(dāng)的點(diǎn)恰好落在射線上時(shí),連接,將繞點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn)后得,在直線上是否存在點(diǎn),使得為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長(zhǎng)為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C

處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓上,過(guò)點(diǎn)C的切線交BA的延長(zhǎng)線于點(diǎn)D,CD=CB,CEAB交半圓于點(diǎn)E.

(1)求∠D的度數(shù);

(2)求證:以點(diǎn)C,O,B,E為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐 問(wèn)題情境:

綜合與實(shí)踐課上,同學(xué)們以“三角形紙片的折疊與旋轉(zhuǎn)“為主題展開(kāi)數(shù)學(xué)活動(dòng),探究有關(guān)的數(shù)學(xué)問(wèn)題.

動(dòng)手操作:

已知:三角形紙片中,.將三角形紙片按如下步驟進(jìn)行操作:

第一步:如圖1,折疊三角形紙片,使點(diǎn)與點(diǎn)重合,然后展開(kāi)鋪平,折痕分別交于點(diǎn),連接,易知

第二步:在圖1的基礎(chǔ)上,將三角形紙片沿剪開(kāi),得到.保持的位置不變,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到(點(diǎn)分別是的對(duì)應(yīng)點(diǎn)),旋轉(zhuǎn)角為問(wèn)題解決:

1)如圖2,小彬畫(huà)出了旋轉(zhuǎn)角時(shí)的圖形,設(shè)線段交于點(diǎn),連接.小彬發(fā)現(xiàn)所在直線始終垂直平分線段.請(qǐng)證明這一結(jié)論;

2)如圖3,小穎畫(huà)出了旋轉(zhuǎn)角時(shí)的圖形,設(shè)直線與直線相交于點(diǎn),連接判斷此時(shí)的形狀,說(shuō)明理由;

3)在繞點(diǎn)逆時(shí)針旋轉(zhuǎn)過(guò)程中,當(dāng)時(shí),請(qǐng)直接寫(xiě)出兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校與圖書(shū)館在同一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示.其中說(shuō)法正確的是(

A.甲的速度是60/分鐘B.乙的速度是80/分鐘

C.點(diǎn)的坐標(biāo)為D.線段所表示的函數(shù)表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角邊長(zhǎng)為的等腰直角三角形與邊長(zhǎng)為3的等邊三角形在同一水平線上,等腰直角三角形沿水平線從左向右勻速穿過(guò)等邊三角形時(shí),設(shè)穿過(guò)時(shí)間為t,兩圖形重合部分的面積為S,則S關(guān)于t的圖象大致為( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案