【題目】如圖,在邊長相同的小正方形網格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點P,則tan∠APD的值為( )
A.1
B.2
C.3
D.
【答案】B
【解析】解:如圖,連接BE,
∵四邊形BCED是正方形,
∴DF=CF= CD,BF= BE,CD=BE,BE⊥CD,
∴BF=CF,
根據題意得:AC∥BD,
∴△ACP∽△BDP,
∴DP:CP=BD:AC=1:3,
∴DP:DF=1:2,
∴DP=PF= CF= BF,
在Rt△PBF中,tan∠BPF= =2,
∵∠APD=∠BPF,
∴tan∠APD=2.
故選:B.
【考點精析】本題主要考查了相似三角形的判定與性質和解直角三角形的相關知識點,需要掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方;解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法)才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于點E.
(1)如圖1,連接EC,求證:△EBC是等邊三角形;
(2)點M是線段CD上的一點(不與點C,D重合),以BM為一邊,在BM的下方作∠BMG=60°,MG交DE延長線于點G.求證:AD=DG+MD;
(3)點N是線段AD上的一點,以BN為一邊,在BN的下方作∠BNG=60°,NG交DE延長線于點G.請在圖3中畫出圖形,并直接寫出ND,DG與AD數量之間的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:AD∥BC,AB∥CD,BE平分∠ABC,EC平分∠BED,∠ECD=45°,則∠ABC的度數為( )
A.45°B.52°C.56°D.60°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司欲招聘一名公關人員,對甲、乙兩位候選人進行了面試和筆試,他們的成績如下表所示:
如果公司認為,作為公關人員面試的成績應該比筆試的成績更重要,并分別賦予它們6和4的權.則( )
A. 甲的平均成績高于乙的平均成績
B. 乙的平均成績高于甲的平均成績
C. 甲與乙的平均成績相同
D. 無法確定誰的成績更高
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為調查本校學生平均每天完成作業(yè)所用時間的情況,隨機調查了50名同學,如圖是根據調查所得數據繪制的統(tǒng)計圖的一部分.
請根據以上信息,解答下列問題:
(1)將統(tǒng)計圖補充完整;
(2)若該校共有1 800名學生,根據以上調查結果估計該校全體學生平均每天完成作業(yè)所用總時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,以AC為直徑作 交AB于點D,E為BC的中點,連接DE并延長交AC的延長線于點F.
(1)求證:DE是 的切線;
(2)若CF=2,DF=4,求 直徑的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知兩點的坐標分別為將線段向右平移個單位到線段連接得四邊形.
(1)則點的坐標為 ,點的坐標為 , ;
(2)如圖①,若點為四邊形內的一點,且求的值.
(3)如圖②,若點為四邊形內的一點(包括邊界).且當面積取最大值時,求此時對應的點的坐標和最大面積的值.[提示:]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com