【題目】如圖,在中,,在同一平面內(nèi),將繞點(diǎn)A旋轉(zhuǎn)到的位置,使得,則________.

【答案】

【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=AC′,∠BAC=B′AC′,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠ACC′=CAB,然后利用等腰三角形兩底角相等求出∠CAC′,再求出∠BAB′=CAC′,從而得解.

∵△ABC繞點(diǎn)A旋轉(zhuǎn)到AB′C′的位置,

AC=AC′,BAC=B′AC′,

CC′AB,CAB=75°

∴∠ACC′=CAB=75°,

∴∠CAC′=180°2ACC′=180°2×75°=30°

∵∠BAB′=BACB′AC

CAC′=B′AC′B′AC

∴∠BAB′=CAC′=30°

故答案為:30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A是線段BC上一點(diǎn),△ABD△ACE都是等邊三角形

(1)連結(jié)BE,DC,求證:BEDC.

(2)如圖△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△AB′D′.

當(dāng)旋轉(zhuǎn)角為__ _度時(shí),AD′落在AE

的條件下,延長DD′CE于點(diǎn)P連結(jié)BD′,CD′.當(dāng)線段AB,AC滿足什么數(shù)量關(guān)系時(shí),△BDD′△CPD′全等?并給予證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點(diǎn)和點(diǎn).過點(diǎn)軸,垂足為點(diǎn),過點(diǎn)軸,垂足為點(diǎn),連結(jié)、、、.點(diǎn)的橫坐標(biāo)為.

1)求的值.

2)若的面積為.

①求點(diǎn)的坐標(biāo).

②在平面內(nèi)存在點(diǎn),使得以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,直接寫出

符合條件的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,AB=AC,D,E是斜邊上BC上兩點(diǎn),且∠DAE=45°,ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到AFB,連接EF,下列結(jié)論:

BFBC;②△AED≌△AEF;BE+DC=DE;BE+DC=DE

其中正確的個(gè)數(shù)是( )

A.1B.2C.0D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上點(diǎn) A、BC 表示的數(shù)分別為 a、bc,如圖所示,且點(diǎn) A、B 到原點(diǎn)的距離相等.

(1)”“”“填空:ab____0ac_____cb

(2)化簡|bc||ca||ba|

(3)點(diǎn) M 為數(shù)軸上另一點(diǎn),M AB、C 的距離分別記為 MAMB、MC. MAMBMC的最小值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)已知二次函數(shù)y=9x26axa2+2a,當(dāng)﹣x,y有最大值為﹣3,則a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)的圖象交于

1)求出m、n的值;

2)直接寫出不等式的解集;

3)求出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,用直尺和圓規(guī)進(jìn)行如下操作:

以點(diǎn)A為圓心,以AD的長為半徑畫弧交BC于點(diǎn)E;

連接AEDE;

DFAE于點(diǎn)F

根據(jù)操作解答下列問題:

1)線段DFAB的數(shù)量關(guān)系是   

2)若∠ADF60°,求∠CDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解本校七年級(jí)學(xué)生數(shù)學(xué)學(xué)習(xí)情況,隨機(jī)抽查該年級(jí)若干名學(xué)生進(jìn)行測(cè)試,然后把測(cè)試結(jié)果分為個(gè)等級(jí):,并將統(tǒng)計(jì)結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問題:

補(bǔ)全條形統(tǒng)計(jì)圖;

等級(jí)為等的所在扇形的圓心角是 度;

如果七年級(jí)共有學(xué)生名,請(qǐng)估算該年級(jí)學(xué)生中數(shù)學(xué)學(xué)習(xí)為等和等的共多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案