【題目】觀察下表:
序號 | 1 | 2 | 3 | … |
圖形 | x x | |||
y | ||||
x x | x x x | |||
y y | ||||
x x x | ||||
y y | ||||
x x x | x x x x | |||
y y y | ||||
x x x x | ||||
y y y | ||||
x x x x | ||||
y y y | ||||
x x x x | … |
我們把某格中字母的和所得到的多項式稱為特征多項式,例如第1格的“特征多項式”為4x+y.回答下列問題:
(1)第2格的“特征多項式”為____,第n格的“特征多項式”為____;(n為正整數(shù))
(2)若第1格的“特征多項式”的值為-8,第2格的“特征多項式”的值為-11.
①求x,y的值;
②在此條件下,第n格的“特征多項式”是否有最小值?若有,求最小值和相應(yīng)的n值;若沒有,請說明理由.
【答案】(1) 9x+4y; (n+1)x+ny;(2) ①x=-3,y=4; ②見解析.
【解析】
(1)利用已知表格中x,y個數(shù)變化規(guī)律得出第2格的“特征多項式”以及第n格的“特征多項式”;
(2)①利用(1)中所求得出關(guān)于x,y的等式組成方程組求出答案;
②利用二次函數(shù)最值求法得出答案.
(1) 9x+4y; (n+1)x+ny.
(2)①∵第1格的“特征多項式”的值為-8,第2格的“特征多項式”的值為-11,
∴根據(jù)題意,可得解得②有最小值,將x=-3,y=4代入(n+1)2x+n2y=-3(n+1)2+4n2=n2-6n-3=(n-3)2-12,當(dāng)n=3時,多項式有最小值為-12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作與探究:如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD的E點上,折痕的一端G點在邊BC上,BG=10.
①第一次折疊:當(dāng)折痕的另一端點F在AB邊上時,如圖1,求折痕GF的長;
②第二次折疊:當(dāng)折痕的另一端點F在AD邊上時,如圖2,證明四邊形BGEF為菱形,并求出折痕GF的長.
(2)拓展延伸:通過操作探究發(fā)現(xiàn)在矩形紙片ABCD中,AB=5,AD=13.如圖3所示,折疊紙片,使點A落在BC邊上的A′處,折痕為PQ.當(dāng)點A′在BC邊上移動時,折痕的端點P,Q也隨之移動.若限定點P,Q分別在AB,AD邊上移動,則點A′在BC邊上可移動的最大距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線一點,點O是線段AD上一點,OP=OC.
(1)已知∠APO=18°,求∠DCO的度數(shù);
(2)求證:△OPC是等邊三角形;
(3)求證:AC=AO+AP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點A在x軸的正半軸上.頂點B的坐標(biāo)為(3,),點C的坐標(biāo)為(1,0),且∠AOB=30°點P為斜邊OB上的一個動點,則PA+PC的最小值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組觀察下雨天學(xué)校池塘水面高度h(單位:cm)與觀察時間t(單位:min)的關(guān)系,并根據(jù)當(dāng)天觀察數(shù)據(jù)畫出了如圖所示的圖象,請你結(jié)合圖象回答下列問題:
(1)求線段BC的表達(dá)式;
(2)試求出池塘原有水面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句正確的有( )句
正方形都相似;有一個角對應(yīng)相等的菱形相似;
有一個角相等的兩個等腰三角形相似;如果一個三角形有兩個角分別為和,另一個三角形有兩個角分別為和,那么這兩個三角形可能不相似.
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x +m和y=-x +n的圖象都是經(jīng)過點A(-2,0),且與y軸分別交于B、C兩點.
(1)直接寫出B、C兩點的坐標(biāo)B: ;C:
(2)求ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD中,M、N分別為AB和CD的中點.
(1)求證:四邊形AMCN是平行四邊形;
(2)若AC=BC=5,AB=6,求四邊形AMCM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,其中圖象與x軸交于點A(-1,0),與y軸交于點C(0,-5),且經(jīng)過點D(3,-8).(1)求此二次函數(shù)的解析式; (2)用配方法將將此二次函數(shù)的解析式寫成的形式,并直接寫出此二次函數(shù)圖象的頂點坐標(biāo)以及它與x軸的另一個交點B的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com