【題目】將一副三角板中的兩塊直角板中的兩個(gè)直角頂點(diǎn)重合在一起,即按如圖所示的方式疊放在一起,其中∠A60°,∠B30,∠D45°.

1)若∠BCD45°,求∠ACE的度數(shù).

2)若∠ACE150°,求∠BCD的度數(shù).

3)由(1)、(2)猜想∠ACE與∠BCD存在什么樣的數(shù)量關(guān)系并說(shuō)明理由.

【答案】1)∠ACE=135°;(2)∠BCD30°;(3)∠ACE與∠BCD互補(bǔ).理由見(jiàn)解析.

【解析】

1)先求得∠ACD的度數(shù),即可得到∠ACE的度數(shù);

2)先求得∠ACD的度數(shù),即可得到∠BCD的度數(shù);

3)依據(jù)∠BCD=∠ACB﹣∠ACD90°﹣∠ACD,∠ACE=∠DCE+ACD90°+ACD,即可得到∠ACE與∠BCD互補(bǔ).

解:(1)∵∠BCD45°,∠ACB90°,

∴∠ACD=∠ACB﹣∠DCB45°,

又∵∠DCE90°,

∴∠ACE=∠ACD+DCE45°+90°=135°;

2)∵∠ACE150°,∠DCE90°,

∴∠ACD=∠ACE﹣∠DCE150°﹣90°=60°,

又∵∠ACB90°,

∴∠BCD=∠ACB﹣∠ACD90°﹣60°=30°;

3)由(1)、(2)猜想∠ACE與∠BCD互補(bǔ).

理由:∵∠BCD=∠ACB﹣∠ACD90°﹣∠ACD,

ACE=∠DCE+ACD90°+ACD

∴∠BCD+ACE90°﹣∠ACD+90°+ACD180°,

∴∠ACE與∠BCD互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中描出下列各組點(diǎn),并將各組的點(diǎn)用線段依次連結(jié)起來(lái).

1(1,0)、(6,0)(6,1)、(5,0)、(6,1)(6,0);

2(2,0)、(5,3)、(4,0);

3(2,0)、(5,3)、(4,0).

觀察所得到的圖形像什么?如果要將此圖形向上平移到x軸上方,那么至少要向上平移幾個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtAOB的一條直角邊OBx軸上,雙曲線(x>0)經(jīng)過(guò)斜邊OA的中點(diǎn)C,與另一直角邊交于點(diǎn)D.若=3,則的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018個(gè)正整數(shù)1,2,3,4,,2018按如圖方式排列成一個(gè)表.

1)用如圖方式框住表中任意4個(gè)數(shù),記左上角的一個(gè)數(shù)為,則另三個(gè)數(shù)用含的式子表示出來(lái),從小到大依次是_____________________、_______________(請(qǐng)直接填寫答案);

2)用(1)中方式被框住的4個(gè)數(shù)之和可能等于2019嗎?如果可能,請(qǐng)求出的值;如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司招聘職員兩名,對(duì)甲、乙、丙、丁四名候選人進(jìn)行了筆試和面試,各項(xiàng)成績(jī)滿分均為100分,然后再按筆試占60%、面試占40%計(jì)算候選人的綜合成績(jī)(滿分為100分).

他們的各項(xiàng)成績(jī)?nèi)缦卤硭荆?/span>

修造人

筆試成績(jī)/分

面試成績(jī)/分

90

88

84

92

x

90

88

86

(1)直接寫出這四名候選人面試成績(jī)的中位數(shù);

(2)現(xiàn)得知候選人丙的綜合成績(jī)?yōu)?7.6分,求表中x的值;

(3)求出其余三名候選人的綜合成績(jī),并以綜合成績(jī)排序確定所要招聘的前兩名的人選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1)x2﹣4x﹣3=0;

(2)(2x+1)2=(2﹣x)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市健益超市購(gòu)進(jìn)一批元/千克的綠色食品,如果以元/千克銷售,那么每天可售出千克.由銷售經(jīng)驗(yàn)知,每天銷售量(千克)與銷售單價(jià)(元)()存在如下圖所示的一次函數(shù)關(guān)系.

(1)試求出yx的函數(shù)關(guān)系式;

(2)設(shè)健益超市銷售該綠色食品每天獲得利潤(rùn)p元,當(dāng)銷售單價(jià)為何值時(shí),每天可獲得 最大利潤(rùn)?最大利潤(rùn)是多少?

(3)根據(jù)市場(chǎng)調(diào)查,該綠色食品每天可獲利潤(rùn)不超過(guò)4480元,現(xiàn)該超市經(jīng)理要求每天利潤(rùn)不得低于4180元,請(qǐng)你幫助該超市確定綠色食品銷售單價(jià)x的范圍(直接寫出).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC為⊙O的直徑,CA是⊙O的切線,連接AB交⊙O于點(diǎn)D,連接CD,∠BAC的平分線交BC于點(diǎn)E,交CD于點(diǎn)F.

(1)求證:CE=CF;

(2)若BD=DC,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E,F(xiàn)分別在BC,CD邊上,且CE=DF,BF與DE交于點(diǎn)G,若BG=2,DG=4,則CD長(zhǎng)為( )

A. B. C. 6 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案