精英家教網 > 初中數學 > 題目詳情

【題目】在一個不透明的袋子里,有5個除顏色外,其他都相同的小球.其中有3個是紅球,2個是綠球,每次拿一個球然后放回去,拿2次,則有一次取到綠球的概率是

【答案】
【解析】解:列表如下:

紅1

紅2

紅3

綠1

綠2

紅1

(紅1,紅1)

(紅1,紅2)

(紅1,紅3)

(紅1,綠1 )

(紅1,綠2)

紅2

(紅2,紅1)

(紅1,紅2)

(紅2,紅3)

(紅2,綠1)

(紅2,綠2)

紅3

(紅3,紅1)

(紅3,紅2)

(紅3,紅3)

(紅3,綠1)

(紅3,綠2)

綠1

(綠1,紅1)

(綠1,紅2)

(綠1,紅3)

(綠1,綠1)

(綠1,綠2)

綠2

(綠2,紅1)

(綠2,紅2)

(綠2,紅3)

(綠2,綠1)

(綠2,綠2)

由列表可知共25種等可能的結果,其中有一次取到綠球的結果有12種,
所以拿2次,則有一次取到綠球的概率
故答案為:
列舉出所有情況,數出有一次取到綠球的情況占總情況數的多少即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線AB,CD 相交于點O,∠AOD=3BOD+20°.

(1)求∠BOD的度數;

(2)O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某大型超市從生產基地購進一批水果,運輸過程中質量損失10%.假設不計超市其他費用,如果超市要想獲得至少20%的利潤,那么這種水果的售價在進價基礎上應至少提高(  )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了提高學生書寫漢字的能力.增強保護漢字的意識,我區(qū)舉辦了“漢字聽寫大賽”,經選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:

組別

成績x

頻數(人數)

1

25≤x<30

4

2

30≤x<35

6

3

35≤x<40

14

4

40≤x<45

a

5

45≤x<50

10

請結合圖表完成下列各題:

(1)求表中a的值;

(2)請把頻數分布直方圖補充完整;

(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cm,BC=8cm,點DAB的中點.

(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,經過1s后,BPDCQP是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPDCQP全等?

(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿ABC三邊運動,求經過多長時間點P與點Q第一次在ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2016年3月,我市某中學舉行了“愛我中國朗誦比賽”活動,根據學生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據圖中提供的信息,回答下列問題:
(1)參加朗誦比賽的學生共有人,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中,m= , n=;C等級對應扇形有圓心角為度;
(3)學校欲從獲A等級的學生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】CD經過∠BCA頂點C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點,且∠BEC=∠CFA=∠α.

(1)若直線CD經過∠BCA的內部,且E,F(xiàn)在射線CD上,請解決下面兩個問題:

如圖1,若∠BCA=90°,∠α=90°,則BE_____CF;EF_____|BE﹣AF|(填“>”,“<”“=”);

如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關于∠α∠BCA關系的條件_____,使中的兩個結論仍然成立。

(2)如圖3,若直線CD經過∠BCA的外部,∠α=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數量關系的合理猜想并給出理由。.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將長方形紙片ABCD對折后再展開,得到折痕EF,MBC上一點,沿著AM再次折疊紙片,使得點B恰好落在折痕EF上的點B′處,連接AB′、BB′.

判斷△AB′B的形狀為   ;

P為線段EF上一動點,當PB+PM最小時,請描述點P的位置為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算下列各題
(1) ﹣3tan30°+(4﹣π)0﹣( 1
(2)先化簡,再求值:( ﹣x+1)÷ ,其中x= ﹣2.

查看答案和解析>>

同步練習冊答案