【題目】如圖,在平行四邊形ABCD中,AC為對角線,過點DDEDC交直線AB于點E,過點EEHAD于點H,過點BBFAD于點F

1)如圖1,若∠BAD60°AF3,AH2,求AC的長;

2)如圖2,若BFDH,在AC上取一點G,連接DGGE,若∠DGE75°,∠CDG45°﹣∠CAB,求證:DGCG

【答案】1AC2;(2)證明見解析.

【解析】

1)注意到∠CBA120°,于是作AMCBM,先求出CMAM的長度,再由勾股定理算出AC長度.

2)由已知條件可以直接判斷出△DEH≌△BAF,然后可推出CDDE,于是連接CE,作ENACN,連接DN,可以證明△DGN是等腰直角三角形以及△CDG≌△EDN,注意到∠EGD75°,從而∠EGN30°,所證結(jié)論就自然成立了.

1)∵四邊形ABCD是平行四邊形,

ADBCADBC,CDAB,CDAB,

BFADF,

∴∠AFB90°,

∵∠BAD60°

AB2AF6,BFAF3

EHADH,

AE2AH4,EHAH2,

DEDCABE,

∴∠DEA90°,

AD2AE8,

CBAD8,

如圖1,作AMCBM,則∠ABM=∠BAD60°,

BM=(1/2AB3,AMBM3,

CMCB+BM11,

RtACM中:AC2

2)如圖2,作ENACN,連接DN、CE,則∠CNE90°

∵四邊形ABCD是平行四邊形,

ADBC,ADBCCDAB,CDAB

DEDCABE,

∴∠CDE=∠DEA90°

EHADH,

∴∠DHD=∠EHA90°,

BFADF,

∴∠DFB=∠AFB90°

∴∠DHE=∠BFA,

∵∠DEH+HEA=∠HEA+BAF90°,

∴∠DEH=∠BAF,

DHBF,

∴△DEH≌△BAFAAS),

DEBACD,

∴△CDE是等腰直角三角形,∠DCE=∠DEC45°,

∵∠CDE=∠CNE90°,

C、D、NE四點共圓,

∴∠DNC=∠DEC45°,

∵∠CDG45°﹣∠CAB,

∴∠CDG+CAB45°,

CDAB

∴∠CAB=∠DCG,

∴∠DGN=∠DCG+CDG45°=∠DNC,

∴△DGN是等腰直角三角形,∠GDN90°DGDN,

∵∠CDG+GDE=∠GDE+EDN90°,

∴∠CDG=∠EDN

∴△CDG≌△EDNSAS),

ENCG

∵∠CGD75°,

∴∠CGN=∠CGD﹣∠DGN30°

GNENCG,

DGGNCG

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD、等腰RtBPQ的頂點P在對角線AC上(點PA、C不重合),QPBC交于E,QP延長線與AD交于點F,連接CQ.

(1)①求證:AP=CQ;②求證:PA2=AFAD;

(2)若AP:PC=1:3,求tanCBQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于BF的長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF.若四邊形ABEF的周長為12,∠C60°,則四邊形ABEF的面積是( 。

A.9B.12C.D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著2020年重慶中招體育考試日益臨近,初三同學堅持每天鍛煉的熱情也愈發(fā)高漲,某班甲、乙兩名同學相約利用課余時間進行跳繩鍛煉.在一次鍛煉中,甲同學完成跳繩180個,乙同學完成跳繩200個,但乙同學所用時間比甲同學少10秒,兩入計算后得知:甲同學每秒比乙同學少跳繩1個,則本次鍛煉中甲同學每秒跳繩多少個?設(shè)甲同學每秒跳繩x個,則由題意可列方程為(

A.10B.10

C.10D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABACDBC中點,點EBA延長線上一點,點FAC上一點,連接EF并延長交BC于點G,且AEAF

1)若∠ABC50°.求∠AEF的度數(shù);

2)求證:ADEG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為豐富綜合實踐活動,開設(shè)了四個實驗室如下:A.物理;B.化學;C.信息;D.生物.為了解學生最喜歡哪個實驗室,隨機抽取了部分學生進行調(diào)查,每位被調(diào)查的學生都選擇了一個自己最喜歡的實驗室,調(diào)查后將調(diào)查結(jié)果繪制成了如圖統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題

1)求這次被調(diào)查的學生人數(shù).

2)請將條形統(tǒng)計圖補充完整.

3)求出扇形統(tǒng)計圖中B對應(yīng)的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教育局為了了解初一學生參加社會實踐活動的天數(shù),隨機抽查本市部分初一學生參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:

1)這次共抽取   名學生進行統(tǒng)計調(diào)查,補全條形圖;

2   ,該扇形所對圓心角的度數(shù)為   

3)如果該市有初一學生人,請你估計活動時間不少于的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y=圖象在第一象限上的一點,連結(jié)AO并延長交圖象的另一分支于點B,延長BA至點C,過點CCDx軸,垂足為D,交反比例函數(shù)圖象于點E.若,△BDC的面積為6,則k=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在菱形ABCD中,∠ADC=60°,點HCD上任意一點(不與C、D重合),過點HCD的垂線,交BD于點E,連接AE

1)如圖1,線段EHCH、AE之間的數(shù)量關(guān)系是   

2)如圖2,將DHE繞點D順時針旋轉(zhuǎn),當點EH、C在一條直線上時,求證:AE+EH=CH

查看答案和解析>>

同步練習冊答案