【題目】如圖,在平行四邊形ABCD中,AC為對角線,過點D作DE⊥DC交直線AB于點E,過點E作EH⊥AD于點H,過點B作BF⊥AD于點F.
(1)如圖1,若∠BAD=60°,AF=3,AH=2,求AC的長;
(2)如圖2,若BF=DH,在AC上取一點G,連接DG、GE,若∠DGE=75°,∠CDG=45°﹣∠CAB,求證:DG=CG.
【答案】(1)AC=2;(2)證明見解析.
【解析】
(1)注意到∠CBA=120°,于是作AM⊥CB于M,先求出CM與AM的長度,再由勾股定理算出AC長度.
(2)由已知條件可以直接判斷出△DEH≌△BAF,然后可推出CD=DE,于是連接CE,作EN⊥AC于N,連接DN,可以證明△DGN是等腰直角三角形以及△CDG≌△EDN,注意到∠EGD=75°,從而∠EGN=30°,所證結(jié)論就自然成立了.
(1)∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,CD=AB,CD∥AB,
∵BF⊥AD于F,
∴∠AFB=90°,
∵∠BAD=60°,
∴AB=2AF=6,BF=AF=3,
∵EH⊥AD于H,
∴AE=2AH=4,EH=AH=2,
∵DE⊥DC交AB于E,
∴∠DEA=90°,
∴AD=2AE=8,
∴CB=AD=8,
如圖1,作AM⊥CB于M,則∠ABM=∠BAD=60°,
∴BM=(1/2)AB=3,AM=BM=3,
∴CM=CB+BM=11,
在Rt△ACM中:AC===2.
(2)如圖2,作EN⊥AC于N,連接DN、CE,則∠CNE=90°.
∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,CD=AB,CD∥AB,
∵DE⊥DC交AB于E,
∴∠CDE=∠DEA=90°,
∵EH⊥AD于H,
∴∠DHD=∠EHA=90°,
∵BF⊥AD于F,
∴∠DFB=∠AFB=90°,
∴∠DHE=∠BFA,
∵∠DEH+∠HEA=∠HEA+∠BAF=90°,
∴∠DEH=∠BAF,
∵DH=BF,
∴△DEH≌△BAF(AAS),
∴DE=BA=CD,
∴△CDE是等腰直角三角形,∠DCE=∠DEC=45°,
∵∠CDE=∠CNE=90°,
∴C、D、N、E四點共圓,
∴∠DNC=∠DEC=45°,
∵∠CDG=45°﹣∠CAB,
∴∠CDG+∠CAB=45°,
∵CD∥AB,
∴∠CAB=∠DCG,
∴∠DGN=∠DCG+∠CDG=45°=∠DNC,
∴△DGN是等腰直角三角形,∠GDN=90°,DG=DN,
∵∠CDG+∠GDE=∠GDE+∠EDN=90°,
∴∠CDG=∠EDN,
∴△CDG≌△EDN(SAS),
∴EN=CG,
∵∠CGD=75°,
∴∠CGN=∠CGD﹣∠DGN=30°,
∴GN=EN=CG,
∴DG=GN=CG
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD、等腰Rt△BPQ的頂點P在對角線AC上(點P與A、C不重合),QP與BC交于E,QP延長線與AD交于點F,連接CQ.
(1)①求證:AP=CQ;②求證:PA2=AFAD;
(2)若AP:PC=1:3,求tan∠CBQ.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于BF的長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF.若四邊形ABEF的周長為12,∠C=60°,則四邊形ABEF的面積是( 。
A.9B.12C.D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著2020年重慶中招體育考試日益臨近,初三同學堅持每天鍛煉的熱情也愈發(fā)高漲,某班甲、乙兩名同學相約利用課余時間進行跳繩鍛煉.在一次鍛煉中,甲同學完成跳繩180個,乙同學完成跳繩200個,但乙同學所用時間比甲同學少10秒,兩入計算后得知:甲同學每秒比乙同學少跳繩1個,則本次鍛煉中甲同學每秒跳繩多少個?設(shè)甲同學每秒跳繩x個,則由題意可列方程為( )
A.﹣=10B.﹣=10
C.﹣=10D.﹣=10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC中點,點E是BA延長線上一點,點F是AC上一點,連接EF并延長交BC于點G,且AE=AF.
(1)若∠ABC=50°.求∠AEF的度數(shù);
(2)求證:AD∥EG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為豐富綜合實踐活動,開設(shè)了四個實驗室如下:A.物理;B.化學;C.信息;D.生物.為了解學生最喜歡哪個實驗室,隨機抽取了部分學生進行調(diào)查,每位被調(diào)查的學生都選擇了一個自己最喜歡的實驗室,調(diào)查后將調(diào)查結(jié)果繪制成了如圖統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題
(1)求這次被調(diào)查的學生人數(shù).
(2)請將條形統(tǒng)計圖補充完整.
(3)求出扇形統(tǒng)計圖中B對應(yīng)的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教育局為了了解初一學生參加社會實踐活動的天數(shù),隨機抽查本市部分初一學生參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:
(1)這次共抽取 名學生進行統(tǒng)計調(diào)查,補全條形圖;
(2) ,該扇形所對圓心角的度數(shù)為 ;
(3)如果該市有初一學生人,請你估計“活動時間不少于天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y=圖象在第一象限上的一點,連結(jié)AO并延長交圖象的另一分支于點B,延長BA至點C,過點C作CD⊥x軸,垂足為D,交反比例函數(shù)圖象于點E.若,△BDC的面積為6,則k=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在菱形ABCD中,∠ADC=60°,點H為CD上任意一點(不與C、D重合),過點H作CD的垂線,交BD于點E,連接AE.
(1)如圖1,線段EH、CH、AE之間的數(shù)量關(guān)系是 ;
(2)如圖2,將△DHE繞點D順時針旋轉(zhuǎn),當點E、H、C在一條直線上時,求證:AE+EH=CH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com