【題目】在中,,,以點為圓心、為半徑作圓,設點為⊙上一點,線段繞著點順時針旋轉,得到線段,連接、.
(1)在圖中,補全圖形,并證明 .
(2)連接,若與⊙相切,則的度數為 .
(3)連接,則的最小值為 ;的最大值為 .
【答案】(1)證明見解析;(2)或 ;(3)
【解析】
(1)根據題意,作出圖像,然后利用SAS證明,即可得到結論;
(2)根據題意,由與⊙相切,得到∠BMN=90°,結合點M的位置,即可求出的度數;
(3)根據題意,當點N恰好落在線段AB上時,BN的值最小;當點N落在BA延長線上時,BN的值最大,分別求出BN的值,即可得到答案.
解:(1)如圖,補全圖形,
證明:
,
∵,
,
;
(2)根據題意,連接MN,
∵與⊙相切,
∴∠BMN=90°,
∵△MNC是等腰直角三角形,
∴∠CMN=45°,
如上圖所示,∠BMC=;
如上圖所示,∠BMC=;
綜合上述,的度數為:或;
故答案為:或;
(3)根據題意,當點N恰好落在線段AB上時,BN的值最;如圖所示,
∵AN=BM=1,
∵,
∴;
當點N落在BA延長線上時,BN的值最大,如圖所示,
由AN=BN=1,
∴BN=BA+AN=2+1=3;
∴的最小值為1;的最大值為3;
故答案為:1,3.
科目:初中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD,點P從點A出發(fā)以每秒1個單位長度的速度沿A﹣D﹣C的路徑向點C運動,同時點Q從點B出發(fā)以每秒2個單位長度的速度沿B﹣C﹣D﹣A的路徑向點A運動,當Q到達終點時,P停止移動,設△PQC的面積為S,運動時間為t秒,則能大致反映S與t的函數關系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x2+mx+n經過點A(3,0)、
B(0,-3),點P是直線AB上的動點,過點P作x軸的垂線交拋物線于點M,設點P的橫
坐標為t.
(1)分別求出直線AB和這條拋物線的解析式.
(2)若點P在第四象限,連接AM、BM,當線段PM最長時,求△ABM的面積.
(3)是否存在這樣的點P,使得以點P、M、B、O為頂點的四邊形為平行四邊形?若存在,請直接寫出點P的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的部分圖象如圖所示,其中圖象與軸交于點,與軸交于點,且經過點.
求此二次函數的解析式;
將此二次函數的解析式寫成的形式,并直接寫出頂點坐標以及它與軸的另一個交點的坐標.
利用以上信息解答下列問題:若關于的一元二次方程(為實數)在的范圍內有解,則的取值范圍是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一個二次函數圖象上部分點的橫坐標與縱坐標的對應值如下表所示:
... | ... | ||||||
... | ... |
(1)求這個二次函數的表達式;
(2)在給定的平面直角坐標系中畫出這個二次函數的圖象;
(3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】教材呈現:下圖是華師版九年級上冊數學教材第77頁的部分內容.
猜想
如圖,在△ABC中,點D、E分別是AB與AC的中點,根據畫出的圖形,可以猜想:
DE∥BC,且DE=BC.
對此,我們可以用演繹推理給出證明
證明在△ABC中,
∵點D、E分別是AB與AC的中點,
∴請根據教材提示,結合圖①,寫出完整證明過程,
結論應用:
如圖②在四邊形ABCD中,AD=BC,點P是對角線BD的中點,M是DC中點,N是AB中點,MN與BD相交于點Q.
(1)求證:∠PMN=∠PNM;
(2)若AD=BC=4,∠ADB=90°,∠DBC=30°,則PQ= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,y是關于的二次函數,拋物線經過點.拋物線經過點拋物線經過點拋物線經過點則下列判斷:
①四條拋物線的開口方向均向下;
②當時,四條拋物線表達式中的均隨的增大而增大;
③拋物線的頂點在拋物線頂點的上方;
④拋物線與軸交點在點的上方.
其中正確的是
A.①②④B.①③④
C.①②③D.②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在平面直角坐標系中,拋物線與軸交于點A、B(點A在點B的左側),且AB=6.
(1)求這條拋物線的對稱軸及表達式;
(2)在y軸上取點E(0,2),點F為第一象限內拋物線上一點,聯結BF、EF,如果,求點F的坐標;
(3)在第(2)小題的條件下,點F在拋物線對稱軸右側,點P在軸上且在點B左側,如果直線PF與y軸的夾角等于∠EBF,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,學校旗桿的下方有一塊圓形草坪,草坪的外面圍著“圓環(huán)”水池,草坪和水池的外邊緣是兩個同心圓,旗桿在圓心O的位置且與地面垂直.
(1)若草坪的面積與圓環(huán)水池的面積之比為1∶4,求兩個同心圓的半徑之比.
(2)如圖,若水池外面通往草坪有一座10米長的小橋BC,小橋所在的直線經過圓心O,上午8:00時太陽光線與地面成30°角,旗桿頂端的影子恰好落在水池的外緣;上午9:00時太陽光線與地面成45°角,旗桿頂端的影子恰好落在草坪的外緣,求旗桿的高OA長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com