【題目】(1)動手操作:
如圖①,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點處,折痕為EF,若∠ABE=20°,那么的度數(shù)為 。
(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請說明理由.
(3)實踐與運用:
將矩形紙片ABCD 按如下步驟操作:將紙片對折得折痕EF,折痕與AD邊交于點E,與BC邊交于點F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點A、點D都與點F重合,展開紙片,此時恰好有MP=MN=PQ(如圖④),求∠MNF的大小。
【答案】(1)125°;(2)同意;(3)60°
【解析】
試題分析:(1)先根據(jù)矩形的性質(zhì)結(jié)合三角形的內(nèi)角和定理求得∠AEB的度數(shù),再根據(jù)折疊的性質(zhì)求得∠DEF的度數(shù),然后根據(jù)平行線的性質(zhì)求得∠EFC的度數(shù),即可得到結(jié)果;
(2) 設(shè)AD與EF交于點G.由折疊的性質(zhì)可得AD平分∠BAC,所以∠BAD=∠CAD.∠AGE=∠DGE=90°,即得∠AEF=∠AFE,從而可以證得結(jié)論;
(3)過N作NH⊥AD于H,設(shè),根據(jù)折疊的性質(zhì)及勾股定理可證得△MPF為等邊三角形,則∠MFE=30°,∠MFN=60°,又MN=MF=,則△MNF為等邊三角形,即可求得結(jié)果;
(1)因為∠ABE=20°,所以∠AEB=70°
由折疊知,∠DEF=55°
所以=∠EFC=125°;
(2)同意.
設(shè)AD與EF交于點G.
由折疊知,AD平分∠BAC,所以∠BAD=∠CAD.
由折疊知,∠AGE=∠DGE=90°,
所以∠AGE=∠AGF=90°,
所以∠AEF=∠AFE.所以AE=AF,
即△AEF為等腰三角形.
(3)過N作NH⊥AD于H
設(shè)
由折疊知, ①
②
∴△MPF為等邊三角形
∴∠MFE=30°
∴∠MFN=60°,
又∵MN=MF=
∴△MNF為等邊三角形
∴∠MNF=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=AC,∠C=90°,AC=7cm,AD是∠BAC的平分線,交BC于D,DE⊥AB于E,求△DEB的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,E,F為BD所在直線上的兩點.若AE=,∠EAF=135°,則以下結(jié)論正確的是( )
A. DE=1 B. tan∠AFO= C. AF= D. 四邊形AFCE的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線和直線y=mx+n交于點A和B,B點的坐標(biāo)是(2,﹣3),AC垂直y軸于點C,AC=.
(1)求雙曲線和和直線的解析式.
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中有一小島P,在距小島P的海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作思考:如圖1,在平面直角坐標(biāo)系中,等腰的直角頂點C在原點,將其繞著點O旋轉(zhuǎn),若頂點A恰好落在點處則的長為______;點B的坐標(biāo)為______直接寫結(jié)果
感悟應(yīng)用:如圖2,在平面直角坐標(biāo)系中,將等腰如圖放置,直角頂點,點,試求直線AB的函數(shù)表達(dá)式.
拓展研究:如圖3,在直角坐標(biāo)系中,點,過點B作軸,垂足為點A,作軸,垂足為點C,P是線段BC上的一個動點,點Q是直線上一動點問是否存在以點P為直角頂點的等腰,若存在,請求出此時P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在菱形ABCD中,∠A=60°,AD=,點P是對角線AC上的一個動點,過點P作EF⊥AC交CD于點E,交AB于點F,將△AEF沿EF折疊點A落在G處,當(dāng)△CGB為等腰三角形時,則AP的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①為Rt△AOB,∠AOB=90°,其中OA=3,OB=4.將AOB沿x軸依次以A,B,O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn).分別得圖②,圖③,…,則旋轉(zhuǎn)到圖⑩時直角頂點的坐標(biāo)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com