【題目】如圖甲,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB,PC=1,求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.

解題思路是:將△BPC繞點B逆時針旋轉60°,如圖乙所示,連接PP′.

(1)△PPB 三角形,△PPA 三角形,∠BPC °;

(2)利用△BPC可以求出△ABC的邊長為

如圖丙,在正方形ABCD內(nèi)有一點P,且PA,BP,PC=1;

(3)求∠BPC度數(shù)的大小;

(4)求正方形ABCD的邊長.

【答案】1)等邊 直角 150°;(2;(3135°;(4 .

【解析】

1)將BPC繞點B順時針旋轉60°,畫出旋轉后的圖形(如圖2),連接PP,可得PPB是等邊三角形,而PPA又是直角三角形(由勾股定理的逆定理可證),所以∠APB150°,而∠BPC=∠APB150°,

2)過點BBMAP,交AP的延長線于點M,進而求出等邊ABC的邊長為 ,問題得到解決.

3)求出,根據(jù)勾股定理的逆定理求出∠APP90°,推出∠BPC=∠AEB90°+45°135°;

4)過點BBFAE,交AE的延長線于點F,求出FEBF1,AF2,關鍵勾股定理即可求出AB

解:(1)∵△ABC是等邊三角形,

∴∠ABC60°

BPC繞點B順時針旋轉60°得出ABP,

∵∠PBC+ABP=∠ABC60°,

∴∠ABP′+ABP=∠ABC60°,

∴△BPP是等邊三角形,

AP1,AP2,

AP2+PP2AP2,

∴∠APP90°,則PPA 直角三角形;

∴∠BPC=∠APB90°+60°150°;

2)過點BBMAP,交AP的延長線于點M,

由勾股定理得:

由勾股定理得:

故答案為:(1)等邊;直角;150;

3)將BPC繞點B逆時針旋轉90°得到AEB

與(1)類似:可得:AE=PC=1,BE=BP=,∠BPC=AEB,∠ABE=PBC,

∴∠EBP=∠EBA+ABP=∠ABC90°

,

由勾股定理得:EP2,

AE2+PE2AP2

∴∠AEP90°,

∴∠BPC=∠AEB90°+45°135°

4)過點BBFAE,交AE的延長線于點F

∴∠FEB45°,

FEBF1,

AF2

∴在RtABF中,由勾股定理,得AB;

∴∠BPC135°,正方形邊長為

答:(3)∠BPC的度數(shù)是135°;

4)正方形ABCD的邊長是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知OAOB=4,∠AOB=60°,半A的半徑為1,點C是半圓上任意一點,連結OC,把OC繞點O順時針旋轉6

0°到OD的位置,連結BD

(1)如圖1,求證:ACBD

(2)如圖2,當OC與半圓相切于點C時,求CD的長.

(3)直接寫出△AOC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,點E是邊BC上一點,點F在射線CM上,∠AEF=90°,AE=EF,過點F作射線BC的垂線,垂足為H,連接AC.

(1)試判斷BE與FH的數(shù)量關系,并說明理由;

(2)求證:∠ACF=90°;

(3)連接AF,過A、E、F三點作圓,如圖2,若EC=4,∠CEF=15°,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線分別交軸于兩點,為線段的中點,是線段上一動點(不與點重合),射線軸,延長于點

1)求證:;

2)連接,記的面積為,求關于的函數(shù)關系式;

3)是否存在的值,使得是以為腰的等腰三角形?若存在,求出所有符合條件的的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+3與拋物線交于A、B兩點,點Ax軸上,點B的橫坐標為.動點P在拋物線上運動(不與點AB重合),過點Py軸的平行線,交直線AB于點Q.當PQ不與y軸重合時,以PQ為邊作正方形PQMN,使MNy軸在PQ的同側,連結PM.設點P的橫坐標為m

1)求b、c的值.

2)當點N落在直線AB上時,直接寫出m的取值范圍.

3)當點PA、B兩點之間的拋物線上運動時,設正方形PQMN的周長為C,求Cm之間的函數(shù)關系式,并寫出Cm增大而增大時m的取值范圍.

4)當PQM與坐標軸有2個公共點時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A、B的坐標分別為(﹣3,0)、(3,0),點P在反比例函數(shù)y= 的圖象上.若△PAB為直角三角形,則滿足條件的點P的個數(shù)為(

A. 2個 B. 4個 C. 5個 D. 6個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車廠決定把一塊長100m、寬60m的矩形空地建成停車場.設計方案如圖所示,陰影區(qū)域為綠化區(qū)(四塊綠化區(qū)為全等的矩形),空白區(qū)域為停車位,且四周的4個出口寬度相同,其寬度不小于28m,不大于52m.設綠化區(qū)較長邊為xm,停車場的面積為ym2

(1)直接寫出:

①用x的式子表示出口的寬度為_____

yx的函數(shù)關系式及x的取值范圍.

(2)求停車場的面積y的最大值.

(3)預計停車場造價為100/m2,綠化區(qū)造價為50/m2.如果汽車廠投資不得超過540000元建造,當x為整數(shù)時,共有幾種建造方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有4個完全相同的小球,分別標有數(shù)字1、2、3、4,另有一個可以自由轉動的轉盤.被分成面積相等的3個扇形區(qū),分別標有數(shù)字1、2、3(如圖所示).小亮和小麗想通過游戲來決定誰代表學校參加歌詠比賽.游戲規(guī)則為:一人從袋子中摸出一個小球,另一個人轉動轉盤,如果從袋中所摸球上的數(shù)字與轉盤上轉出數(shù)字之和小于4,那么小麗去,否則小亮去.

(1)請用適當?shù)姆椒ㄇ笮←悈⒓颖荣惖母怕剩?/span>

(2)你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

同步練習冊答案