【題目】如圖,直線,相交于點,平分,于點,,請補全圖形,并求出的度數(shù).
【答案】圖見解析;=135°或45°
【解析】
根據(jù)OF與CD的相對位置分類討論:①若OF在CD上方時,根據(jù)題意,可設(shè):,再根據(jù)角平分線的定義可得:∠BOC=2,然后根據(jù)平角的定義列出方程,即可求出x,從而求出∠AOC,再根據(jù)垂直的定義即可求出的度數(shù);②若OF在CD下方時,原理同上.
解:①若OF在CD上方時,如圖所示,
∵
設(shè)
∵平分
∴∠BOC=2
∵∠BOC+∠BOD=180°
∴
解得:
∴∠AOC=∠BOD=2×22.5°=45°
∵
∴∠COF=90°
∴∠AOF=∠AOC+∠COF=135°
②若OF在CD下方時,如圖所示,
∵
設(shè)
∵平分
∴∠BOC=2
∵∠BOC+∠BOD=180°
∴
解得:
∴∠AOC=∠BOD=2×22.5°=45°
∵
∴∠COF=90°
∴∠AOF=∠COF-∠AOC=45°
綜上所述:=135°或45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校舉行“中國夢,我的夢”演講比賽,初、高中部根據(jù)初賽成績,各選出5名選手組成代表隊決賽,初、高中部代表隊的選手決賽成績?nèi)鐖D所示:
(1)根據(jù)圖示填寫表格:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中代表隊 | 85 |
| 85 |
高中代表隊 |
| 80 |
|
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,連接EC.
(1)求證:AD=EC;
(2)當(dāng)∠BAC=Rt∠時,求證:四邊形ADCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為-20,B點對應(yīng)的數(shù)為80.
(1)請寫出AB的中點M對應(yīng)的數(shù).
(2)現(xiàn)在有一只電子螞蟻P從B點出發(fā),以2個單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以3個單位/秒的速度向右運動,設(shè)兩只電子螞蟻在數(shù)軸上的C點相遇,
①你知道經(jīng)過幾秒兩只電子螞蟻相遇?
②點C對應(yīng)的數(shù)是多少?
③經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相距15個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
(1)甲,乙兩組工作一天,商店各應(yīng)付多少錢?
(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?
(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)舉行“中華誦經(jīng)典誦讀”大賽,小學(xué)、中學(xué)組根據(jù)初賽成績,各選出5名選手組成小學(xué)代表隊和中學(xué)代表隊參加市級決賽,兩個代表隊各選出的5名選手的決賽成績分別繪制成下列兩個統(tǒng)計圖
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均數(shù)(分 | 中位數(shù)(分 | 眾數(shù)(分 | |
小學(xué)組 | 85 | 100 | |
中學(xué)組 | 85 |
(1)寫出表格中,,的值: , , .
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個隊的決賽成績較好?
(3)計算兩隊決賽成績的方差,并判斷哪一個代表隊選手成績較穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】命題:如果兩條平行線被第三條直線所截,那么一組內(nèi)錯角的平分線互相平行,如圖為符合該命題的示意圖.
(1)請你根據(jù)圖形把該命題用幾何符號語言補充完整,己知:直線、被第三條直線所截,且,平分,平分______,則____________
(2)判斷該命題的真假,若是假命題,請舉例說明:若是真命題,請證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點的位置如圖所示,點A′的坐標(biāo)是(﹣2,2),現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應(yīng)點.
(1)請畫出平移后的△A′B′C′(不寫畫法);
(2)并直接寫出點B′、C′的坐標(biāo):B′( )、C′( );
(3)若△ABC內(nèi)部一點P的坐標(biāo)為(a,b),則點P的對應(yīng)點P′的坐標(biāo)是( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com