【題目】已知關(guān)于x的一元二次方程 (a+2b)x2-x+(a+2b)=0有實(shí)數(shù)根.

(1)a=2,b=1,求方程的根

(2)m=a2+b2+5a,b<0,m的取值范圍.

【答案】1x1=x22m5

【解析】

1)將a2b1代入原方程中,利用直接開方法解一元二次方程即可得出結(jié)論;

2)由b0、2ab0找出a的取值范圍,再根據(jù)方程有實(shí)數(shù)根,利用根的判別式△≥0找出a、b之間的關(guān)系,由此即可得出m關(guān)于b的函數(shù)關(guān)系式,結(jié)合b的取值范圍即可得出m的取值范圍.

1)當(dāng)a2、b1時(shí),原方程為4x24x1=(2x120,

解得:x1=x2

2)∵2ab0,b0,

a0

∵方程(a+2b)x2-2x(a+2b)=0有實(shí)數(shù)根有實(shí)數(shù)根,

∴△=(2)2a2b)×a2b)=a2b20,

a2b,

ma2b25a5b210b5b125

b0,

m5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一居民樓前方處有一建筑物,小敏在居民樓的頂部處和底部處分別測得建筑物頂部的仰角為,求居民樓的高度和建筑物的高度(結(jié)果取整數(shù))

(參考數(shù)據(jù):,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x+cx軸于A、B兩點(diǎn)(BA左側(cè)),交y軸于C,AB10

1)求拋物線的解析式;

2)在A點(diǎn)右側(cè)的x軸上取點(diǎn)D,E為拋物線上第二象限內(nèi)的點(diǎn),連接DE交拋物線另外一點(diǎn)F,tanBDEDF2EF,求E點(diǎn)坐標(biāo);

3)在(2)的條件下,點(diǎn)Gx軸負(fù)半軸上,連接EG,EHAB交拋物線另外一點(diǎn)H,點(diǎn)K在第四象限的拋物線上,設(shè)DEy軸于R,∠EHK=∠EGD+ORD,當(dāng)HKEG,求K點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】距離中考體考時(shí)間越來越近,年級想了解初三年級1000名學(xué)生周末在家體育鍛煉的情況,在初三年級隨機(jī)抽取了20名男生和20名女生,對他們周末在家的鍛煉時(shí)間進(jìn)行了調(diào)查,并收集得到了以下數(shù)據(jù)(單位:min):

男生:20 30 40 45 60 120 80 50 100 45 85 90 90 70 90 50 90 50 70 40

女生:75 30 120 70 60 100 90 40 75 60 75 75 80 90 70 80 50 80 100 90

統(tǒng)計(jì)數(shù)據(jù),并制作了如下統(tǒng)計(jì)表:

時(shí)間 x

x≤30

30x≤60

60x≤90

90x≤120

男生

2

8

8

2

女生

1

m

n

3

分析數(shù)據(jù):兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)如下表所示

極差

平均數(shù)

中位數(shù)

眾數(shù)

男生

a

65.75

b

90

女生

c

75.5

75

d

1)請將上面的表格補(bǔ)充完整:m ,n a ,b ,c ,d

2)已知該年級男女生人數(shù)差不多,根據(jù)調(diào)查的數(shù)據(jù),估計(jì)初三年級周末在家鍛煉的時(shí)間在 90min 以上的同學(xué)約有多少人?

3)李老師看了表格數(shù)據(jù)后認(rèn)為初三年級的女生周末鍛煉做得比男生好,請你結(jié)合統(tǒng)計(jì)數(shù)據(jù),寫出兩條支持李老師觀點(diǎn)的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)Ax軸負(fù)半軸上,頂點(diǎn)Bx軸正半軸上.若拋物線p=ax2-10ax+8a0)經(jīng)過點(diǎn)CD,則點(diǎn)B的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;

(2)若此方程的一個(gè)根是1,請求出方程的另一個(gè)根,并求以此兩根為邊長的直角三角形的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系內(nèi),的三個(gè)頂點(diǎn)的分別為,(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).

1)在網(wǎng)格內(nèi)畫出向下平移2個(gè)單位長度得到的,點(diǎn)的坐標(biāo)是________;

2)以點(diǎn)為位似中心,在網(wǎng)格內(nèi)畫出,使位似,且位似比為,點(diǎn)的坐標(biāo)是________;

3的面積是________平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在矩形 ABCD AB=8BC=6,AE=BE,點(diǎn) F 為邊 BC 上任意一點(diǎn),將BEF 沿著 EF 翻折,點(diǎn) B 為點(diǎn) B 的對應(yīng)點(diǎn),則當(dāng)BCD 的面積最小時(shí)BCF 的面積為(

A.4B.6C.4.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABADCD,以AB為直徑的⊙O經(jīng)過點(diǎn)C,連接AC,OD交于點(diǎn)E

1)證明:ODBC;

2)若AD是⊙O的切線,連接BD交于⊙O于點(diǎn)F,連接EF,且OA1,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案