【題目】一次函數(shù)y1kx+12kk0)的圖象記作G1,一次函數(shù)y22x+3(﹣1x2)的圖象記作G2,對于這兩個(gè)圖象,有以下幾種說法:

當(dāng)G1G2有公共點(diǎn)時(shí),y1x增大而減。

當(dāng)G1G2沒有公共點(diǎn)時(shí),y1x增大而增大;

當(dāng)k2時(shí),G1G2平行,且平行線之間的距離為

下列選項(xiàng)中,描述準(zhǔn)確的是( 。

A.①②正確,錯(cuò)誤B.①③正確,錯(cuò)誤

C.②③正確,錯(cuò)誤D.①②③都正確

【答案】D

【解析】

畫圖,找出G2的臨界點(diǎn),以及G1的臨界直線,分析出G1過定點(diǎn),根據(jù)k的正負(fù)與函數(shù)增減變化的關(guān)系,結(jié)合函數(shù)圖象逐個(gè)選項(xiàng)分析即可解答.

解:一次函數(shù)y22x+3(﹣1x2)的函數(shù)值隨x的增大而增大,如圖所示,

N(﹣12),Q2,7)為G2的兩個(gè)臨界點(diǎn),

易知一次函數(shù)y1kx+12kk≠0)的圖象過定點(diǎn)M2,1),

直線MN與直線MQG1G2有公共點(diǎn)的兩條臨界直線,從而當(dāng)G1G2有公共點(diǎn)時(shí),y1x增大而減小;故①正確;

當(dāng)G1G2沒有公共點(diǎn)時(shí),分三種情況:

一是直線MN,但此時(shí)k0,不符合要求;

二是直線MQ,但此時(shí)k不存在,與一次函數(shù)定義不符,故MQ不符合題意;

三是當(dāng)k0時(shí),此時(shí)y1x增大而增大,符合題意,故②正確;

當(dāng)k2時(shí),G1G2平行正確,過點(diǎn)MMPNQ,則MN3,由y22x+3,且MNx軸,可知,tanPNM2,

PM2PN

由勾股定理得:PN2+PM2MN2

∴(2PN2+PN29,

PN,

PM.

故③正確.

綜上,故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船從位于燈塔C的北偏東60°方向,距離燈塔60 n mile的小島A出發(fā),沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔C的南偏東45°方向上的B處,這時(shí)輪船B與小島A的距離是( )

A. n mileB.60 n mileC.120 n mileD.n mile

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,邊上的中線,點(diǎn)在射線.

猜想:如圖①,點(diǎn)邊上, 相交于點(diǎn),過點(diǎn),交的延長線于點(diǎn),則的值為 .

探究:如圖②,點(diǎn)的延長線上,的延長線交于點(diǎn), ,求的值.

應(yīng)用:在探究的條件下,若,則 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為,與軸相交于點(diǎn),對稱軸為直線,點(diǎn)是線段的中點(diǎn).

1)求拋物線的表達(dá)式;

2)寫出點(diǎn)的坐標(biāo)并求直線的表達(dá)式;

3)設(shè)動(dòng)點(diǎn),分別在拋物線和對稱軸l上,當(dāng)以,,為頂點(diǎn)的四邊形是平行四邊形時(shí),求,兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),且與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn),作軸于點(diǎn),

1)求直線的函數(shù)解析式;

2)設(shè)點(diǎn)軸上的點(diǎn),若的面積等于6,直接寫出點(diǎn)的坐標(biāo);

3)設(shè)點(diǎn)是軸上的點(diǎn),且為等腰三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,中點(diǎn),點(diǎn)為射線上(不與點(diǎn)重合)的任意一點(diǎn),連接,并使的延長線交射線于點(diǎn),設(shè)

1)求證:;

2)當(dāng)時(shí),求的長;

3)當(dāng)的外心不在三角形外部時(shí),請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn)與點(diǎn)

1)求反比例函數(shù)的表達(dá)式及點(diǎn)坐標(biāo).

2)根據(jù)圖象回答,在什么范圍時(shí),一次函數(shù)的值大于反比例函數(shù)的值.

3)求三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中.拋物線y=x2+4x+3y軸交于點(diǎn)A,拋物線的對稱軸與x軸交于點(diǎn)B,連接AB,將△OAB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)得到△O'A'B

1)用配方法求拋物線的對稱軸并直接寫出A,B兩點(diǎn)的坐標(biāo);

2)如圖1,當(dāng)點(diǎn)A'第一次落在拋物線上時(shí),∠O'BO=nOAB,請直接寫出n的值;

3)如圖2,當(dāng)△OAB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,直線A'O'x軸于點(diǎn)M,求△A'MB的面積;

4)在旋轉(zhuǎn)過程中,連接OO',當(dāng)∠O'OB=OAB時(shí).直線A'O'的函數(shù)表達(dá)式是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在中,,,的中位線,連結(jié),點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),連結(jié),交

(1)當(dāng)點(diǎn)的中點(diǎn)時(shí),求的值及的長

(2) 當(dāng)四邊形與四邊形的面積相等時(shí),求的長:

(3)如圖2.以為直徑作

①當(dāng)正好經(jīng)過點(diǎn)時(shí),求證:的切線:

②當(dāng)的值滿足什么條件時(shí),與線段有且只有一個(gè)交點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案