【題目】如圖1,拋物線(xiàn)與軸交于點(diǎn)A(4,0),與軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)E(m,0)(0<m<4),過(guò)點(diǎn)E作軸的垂線(xiàn)交直線(xiàn)AB于點(diǎn)N,交拋物線(xiàn)于點(diǎn)P,過(guò)點(diǎn)P作PM⊥AB于點(diǎn)M.
(1)求的值和直線(xiàn)AB的函數(shù)表達(dá)式;
(2)在P點(diǎn)運(yùn)動(dòng)的過(guò)程中,請(qǐng)用含m的代數(shù)式表示線(xiàn)段PN;
(3)設(shè)△PMN的周長(zhǎng)為,△AEN的周長(zhǎng)為,若,求m的值;
(4)如圖2,在(3)條件下,將線(xiàn)段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<90°),連接、,求的最小值.
【答案】(1);直線(xiàn)AB解析式為y=;(2)PN=m2+3m ;(3)2;(4)
【解析】試題解析:(1)(1)令y=0,求出拋物線(xiàn)與x軸交點(diǎn),列出方程即可求出a,根據(jù)待定系數(shù)法可以確定直線(xiàn)AB解析式;(2)由△PNM∽△ANE,推出,列出方程即可解決問(wèn)題;(3)在y軸上 取一點(diǎn)M使得OM′=,構(gòu)造相似三角形,可以證明AM′就是的最小值;
試題分析:
(1)∵拋物線(xiàn)y=ax2+(a+3)x+3(a≠0)與x軸交于點(diǎn)A(4,0),
∴a=﹣. ……………………………………………2分
∵A(4,0),B(0,3),
設(shè)直線(xiàn)AB解析式為y=kx+b,則,
解得,
∴直線(xiàn)AB解析式為y=﹣x+3 ……………………………………………4分
設(shè)點(diǎn)P(m,﹣m2+m+3)
點(diǎn)N在直線(xiàn)AB上則N()
∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m ………………………………6分
(3)如圖1中,
∵PM⊥AB,PE⊥OA,
∴∠PMN=∠AEN,∵∠PNM=∠ANE,
∴△PNM∽△ANE, ……………………………………………8分
∴=,
∵NE∥OB,
∴=,
∴AN=(4﹣m),
∵PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,
∴=,
解得m=2 ……………………………………………10分
(3)如圖2中,在y軸上 取一點(diǎn)M′使得OM′=,連接AM′交PE于E′,
∵OE′=2,OM′OB=×3=4,
∴OE′2=OM′OB,
∴=,∵∠BOE′=∠M′OE′,
∴△M′OE′∽△E′OB,
∴==,
∴M′E′=BE′,
∴AE′+BE′=AE′+E′M′=AM′,此時(shí)AE′+BE′最小(兩點(diǎn)間線(xiàn)段最短,A、M′、E′共線(xiàn)時(shí)),
最小值=AM′==。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是正方形ABCD的邊DC上一點(diǎn),過(guò)點(diǎn)A作FA=AE交CB的延長(zhǎng)線(xiàn)于點(diǎn)F,若AB=4,則四邊形AFCE的面積是( )
A.4
B.8
C.16
D.無(wú)法計(jì)算
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a、b均為正整數(shù),則數(shù)據(jù)a、b、10、11、11、12的眾數(shù)和中位數(shù)可能分別是( )
A. 10、10B. 11、11C. 10、11.5D. 12、10.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列整式乘法的運(yùn)算中,正確的是( )
A. (a+b)(a﹣b)=a2﹣b2 B. (a+b)2=a2+b2
C. (a+b)(a﹣b)=2a D. (a﹣b)2=a2﹣2ab﹣b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)際奧委會(huì)會(huì)旗上的五環(huán)圖案可以看作一個(gè)基本圖案圓環(huán)經(jīng)過(guò)______運(yùn)動(dòng)得到
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下述命題中,真命題有( )
(1)對(duì)角線(xiàn)互相垂直的四邊形是菱形
(2)三個(gè)角的度數(shù)之比為1:3:4的三角形是直角三角形
(3)對(duì)角互補(bǔ)的平行四邊形是矩形
(4)三邊之比為1: :2的三角形是直角三角形.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于拋物線(xiàn)y=(x+1)2+3有以下結(jié)論:①拋物線(xiàn)開(kāi)口向下;②對(duì)稱(chēng)軸為直線(xiàn)x=1;③頂點(diǎn)坐標(biāo)為(﹣1,3);④x>1時(shí),y隨x的增大而減小.其中正確結(jié)論的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com