【題目】如圖,直線y=﹣x+4x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經(jīng)過B、C兩點.

(1)求拋物線的解析式;

(2)如圖,點E是直線BC上方拋物線上的一動點,當△BEC面積最大時,請求出點E的坐標;

(3)在(2)的結(jié)論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

【答案】(1)y=﹣x2+x+4;(2)E(3,8);(3)點P的坐標是(﹣2,﹣)或(6,0)或(0,4).

【解析】試題分析:1)首先根據(jù)直線x軸交于點C,與y軸交于點B,求出點B的坐標是,點C的坐標是 然后根據(jù)拋物線經(jīng)過兩點,求出的值是多少,即可求出拋物線的解析式.
2)首先過過EEGy軸,交直線BCG,然后設 求出的值是多少;最后根據(jù)三角形的面積的求法,求出 進而判斷出當面積最大時,點E的坐標和面積的最大值各是多少即可.
3)在拋物線上存在點P,使得以為頂點的四邊形是平行四邊形.然后分三種情況討論,根據(jù)平行四邊形的特征,求出使得以為頂點的四邊形是平行四邊形的點P的坐標是多少即可.

試題解析:1)當時,

,

時,

代入拋物線中得:

解得: ,

∴拋物線的解析式為:

2)如圖1,過EEGy軸,交直線BCG,

S有最大值,此時

3

對稱軸是:

在拋物線上存在點P,使得以P、QA、M為頂點的四邊形是平行四邊形.

如圖2,以AM為邊時,由(2),可得點M的橫坐標是3

∵點M在直線上,

∴點M的坐標是(3,2),

又∵點A的坐標是(﹣10),點Q的橫坐標為2,

根據(jù)MQ的平移規(guī)律:可知:P的橫坐標為﹣2,

②如圖3,以AM為邊時,四邊形AMPQ是平行四邊形,

由(2),可得點M的橫坐標是2

A﹣1,0),且Q的橫坐標為2,

P的橫坐標為6,

P6,0)(此時PC重合);

③以AM為對角線時,如圖4,

MQ的平移規(guī)律可得PA的平移規(guī)律

∴點P的坐標是(0,4

綜上所述,在拋物線上存在點P,使得以PQ、AM為頂點的四邊形是平行四邊形,

P的坐標是或(60)或(0,4).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

(1)寫出表格中a,b,c的值;

(2)分別運用上表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場今年2月份的營業(yè)額為400萬元,3月份的營業(yè)額比2月份增加10%5月份的營業(yè)額達到633.6萬元.求3月份到5月份營業(yè)額的月平均增長率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為(  )

A. ,0) B. (2,0) C. ,0) D. (3,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖,已知三角形ABC的邊AB⊙O的切線,切點為BAC經(jīng)過圓心O并與圓相交于點D、C,過C作直線CEAB,交AB的延長線于點E

1)求證:CB平分∠ACE;

2)若BE=3CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形的對角線,相交于點,下面四組條件

,;

,;,

其中能判定是正方形的條件有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,平分于點,在上截取,過點于點.求證:四邊形是菱形;

如圖,中,平分的外角的延長線于點,在的延長線上截取,過點的延長線于點.四邊形還是菱形嗎?如果是,請證明;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】母親節(jié)前期,某花店購進康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價1元促銷,降價后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍.

(1)求降價后每枝玫瑰的售價是多少元?

(2)根據(jù)銷售情況,店主用不多于900元的資金再次購進兩種鮮花共500枝,康乃馨進價為2/枝,玫瑰進價為1.5/枝,問至少購進玫瑰多少枝?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的文字后,解答問題:

有這樣一道題目:“如圖,ED是△ABCBC邊上的兩點,ADAE,   .求證△ABE≌△ACD.請根據(jù)你的理解,在題目中的空格內(nèi),把原題補充完整(添加一個適當?shù)臈l件),并寫出證明過程.

查看答案和解析>>

同步練習冊答案