【題目】為了弘揚我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:祖沖之獎、劉徽獎趙爽獎楊輝獎,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲祖沖之獎的學(xué)生成績統(tǒng)計表:

祖沖之獎的學(xué)生成績統(tǒng)計表:

分?jǐn)?shù)

80

85

90

95

人數(shù)

4

2

10

4

根據(jù)圖表中的信息,解答下列問題:

這次獲得劉徽獎的人數(shù)是多少,并將條形統(tǒng)計圖補充完整;

獲得祖沖之獎的學(xué)生成績的中位數(shù)是多少分,眾數(shù)是多少分;

在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標(biāo)有數(shù)字“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標(biāo),把y作為縱坐標(biāo),記作點用列表法或樹狀圖法求這個點在第二象限的概率.

【答案】(1)劉徽獎的人數(shù)為人,補全統(tǒng)計圖見解析;(2)獲得祖沖之獎的學(xué)生成績的中位數(shù)是90分,眾數(shù)是90分;(3)(點在第二象限)

【解析】

1)先根據(jù)祖沖之獎的人數(shù)及其百分比求得總?cè)藬?shù),再根據(jù)扇形圖求出趙爽獎、楊輝獎的人數(shù),繼而根據(jù)各獎項的人數(shù)之和等于總?cè)藬?shù)求得劉徽獎的人數(shù),據(jù)此可得;

2)根據(jù)中位數(shù)和眾數(shù)的定義求解可得;

3)列表得出所有等可能結(jié)果,再找到這個點在第二象限的結(jié)果,根據(jù)概率公式求解可得.

1)∵獲獎的學(xué)生人數(shù)為20÷10%=200人,∴趙爽獎的人數(shù)為200×24%=48人,楊輝獎的人數(shù)為200×46%=92人,則劉徽獎的人數(shù)為200﹣(20+48+92=40,補全統(tǒng)計圖如下:

故答案為:40;

2)獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是90分,眾數(shù)是90分.

故答案為:9090;

3)列表法:

∵第二象限的點有(﹣22)和(﹣1,2),∴P(點在第二象限)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點A的坐標(biāo)為(11),點Bx軸正半軸上,點D在第三象限的雙曲線y上,過點CCEx軸交雙曲線于點E,連接BE,則△BCE的面積為( )

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=3.點E從D向C以每秒1個單位的速度運動,以AE為一邊在AE的右下方作正方形AEFG.同時垂直于CD的直線MN也從C向D以每秒2個單位的速度運動,當(dāng)經(jīng)過多少秒時.直線MN和正方形AEFG開始有公共點?(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以原點O為圓心的圓過點A(13,0),直線y=kx3k+4與O交于B、C兩點,則弦BC的長的最小值為( ).

A.22 B.24 C.10 D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數(shù)圖象,請結(jié)合圖象,回答下列問題:

(1)A、B兩點之間的距離是   米,甲機器人前2分鐘的速度為   /分;

(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數(shù)解析式;

(3)若線段FGx軸,則此段時間,甲機器人的速度為   /分;

(4)求A、C兩點之間的距離;

(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABO中,∠B=90°,∠OAB=30°,OA=3.以點O為原點,斜邊OA所在直線為x軸,建立平面直角坐標(biāo)系,以點P4,0)為圓心,PA長為半徑畫圓,⊙Px軸的另一交點為N,點M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個單位長度的速度沿x軸向左運動,設(shè)運動時間為ts,解答下列問題:

(發(fā)現(xiàn))(1的長度為多少;

2)當(dāng)t=2s時,求扇形MPN(陰影部分)與RtABO重疊部分的面積.

(探究)當(dāng)⊙P和△ABO的邊所在的直線相切時,求點P的坐標(biāo).

(拓展)當(dāng)RtABO的邊有兩個交點時,請你直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF

的長為多少;

AE的長;

BE上是否存在點P,使得的值最小?若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣5ax+c與坐標(biāo)軸分別交于點A,C,E三點,其中A(﹣3,0),C(0,4),點Bx軸上,AC=BC,過點BBDx軸交拋物線于點D,點M,N分別是線段CO,BC上的動點,且CM=BN,連接MN,AM,AN.

(1)求拋物線的解析式及點D的坐標(biāo);

(2)當(dāng)CMN是直角三角形時,求點M的坐標(biāo);

(3)試求出AM+AN的最小值.

查看答案和解析>>

同步練習(xí)冊答案