【題目】如圖,在正方形ABCD中,點(diǎn)E在邊CD(不與點(diǎn)C,D重合),連接AE,BD交于點(diǎn)F.

1)若點(diǎn)ECD中點(diǎn),AB2,求AF的長(zhǎng).

2)若AFB2,求的值.

3)若點(diǎn)G在線段BF上,且GF2BG,連接AGCG,設(shè)x,四邊形AGCE的面積為,ABG的面積為,求的最大值.

【答案】1;(2;(3.

【解析】

1)由可得DE的長(zhǎng),利用勾股定理可得AE的長(zhǎng),又易證,由相似三角形的性質(zhì)可得,求解即可得;

2)如圖(見(jiàn)解析),連接ACBD交于點(diǎn)O,由正方形的性質(zhì)可知,,,設(shè),在中,可求出,從而可得DFBF的長(zhǎng),即可得出答案;

3)設(shè)正方形的邊長(zhǎng),可得DEAO、BO、BD的長(zhǎng),由可得BF的長(zhǎng),又根據(jù)可得BG的長(zhǎng),從而可得的面積,用正方形的面積減去三個(gè)三角形的面積可得四邊形AGCE的面積,再利用二次函數(shù)的性質(zhì)求解的最大值.

1CD中點(diǎn),

,即

2)如圖,連接ACBD交于點(diǎn)O

由正方形的性質(zhì)得,

設(shè)

中,

,

;

3)設(shè)正方形的邊長(zhǎng),則

由(1)知

由二次函數(shù)圖象的性質(zhì)得:當(dāng)時(shí),有最大值,最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,對(duì)角線AC的垂直平分線EF分別交BCAD于點(diǎn)E,F,若BE=3AF=5,則AC的長(zhǎng)為(

A. B. C. 10D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖三角形ABC是圓O的內(nèi)接正三角形,弦EF經(jīng)過(guò)BC邊的中點(diǎn)D,且EF平行AB,若AB等于6,則EF等于________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是O的直徑,過(guò)O點(diǎn)作OPAB,交弦AC于點(diǎn)D,交O于點(diǎn)E,且使PCA=ABC.

(1)求證:PC是O的切線;

(2)若P=60°,PC=2,求PE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,AB5,BC4,點(diǎn)D為邊AC上的動(dòng)點(diǎn),作菱形DEFG,使點(diǎn)EF在邊AB上,點(diǎn)G在邊BC.若這樣的菱形能作出兩個(gè),則AD的取值范圍是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ymx+nm0)的圖象與y軸交于點(diǎn)C,與反比例函數(shù)yk0)的圖象交于A,B兩點(diǎn),點(diǎn)A在第一象限,縱坐標(biāo)為4,點(diǎn)B在第三象限,BMx軸,垂足為點(diǎn)M,BMOM2

1)求反比例函數(shù)和一次函數(shù)的解析式.

2)連接OBMC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在某一路段,規(guī)定汽車(chē)限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測(cè)區(qū),其中點(diǎn)C、D為監(jiān)測(cè)點(diǎn),已知點(diǎn)CD、B在同一直線上,且ACBC,CD400米,tanADC2,∠ABC35°

1)求道路AB段的長(zhǎng)(結(jié)果精確到1米)

2)如果道路AB的限速為60千米/時(shí),一輛汽車(chē)通過(guò)AB段的時(shí)間為90秒,請(qǐng)你判斷該車(chē)是否是超速,并說(shuō)明理由;參考數(shù)據(jù):sin35°≈0.5736cos35°≈0.8192,tan35°≈0.7002

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABO中,∠B=90 ,OB=3,OA=5,以AO上一點(diǎn)P為圓心,PO長(zhǎng)為半徑的圓恰好與AB相切于點(diǎn)C,則下列結(jié)論正確的是( 。

A.P 的半徑為

B.經(jīng)過(guò)AO,B三點(diǎn)的拋物線的函數(shù)表達(dá)式是

C.點(diǎn)(32)在經(jīng)過(guò)A,O,B三點(diǎn)的拋物線上

D.經(jīng)過(guò)A,O,C三點(diǎn)的拋物線的函數(shù)表達(dá)式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與直線都經(jīng)過(guò)點(diǎn),,且直線軸于點(diǎn),交軸于點(diǎn),連接,.

1)直接寫(xiě)出,的值及直線的函數(shù)表達(dá)式;

2的面積相等嗎?寫(xiě)出你的判斷,并說(shuō)明理由;

3)若點(diǎn)軸上一點(diǎn),當(dāng)的值最小時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案