【題目】如圖,已知點(diǎn)P是雙曲線y=上的一個(gè)動(dòng)點(diǎn),連結(jié)OP,若將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OQ,則經(jīng)過點(diǎn)Q的雙曲線的表達(dá)式為__.
【答案】y=﹣
【解析】
過點(diǎn)P、Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,根據(jù)全等三角形對應(yīng)邊相等以及反比例函數(shù)k的幾何意義即可求得答案.
過P,Q分別作PM⊥x軸,QN⊥x軸,
∵∠POQ=90°,
∴∠QON+∠POM=90°,
∵∠QON+∠OQN=90°,
∴∠POM=∠OQN,
由旋轉(zhuǎn)可得OP=OQ,
在△QON和△OPM中,
,
∴△QON≌△OPM(AAS),
∴ON=PM,QN=OM,
設(shè)P(a,b),則有Q(﹣b,a),
由點(diǎn)P在y=上,得到ab=3,可得﹣ab=﹣3,
則點(diǎn)Q在y=﹣上,
故答案是:y=﹣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線//BC,分別交,外角的平分線于點(diǎn)E、F.
(1)猜想與證明,試猜想線段OE與OF的數(shù)量關(guān)系,并說明理由.
(2)連接AE,AF,問:當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí)到什么位置時(shí),四邊形AECF是矩形?并說明理由.
(3)若AC邊上存在一點(diǎn)O,使四邊形AECF是正方形,猜想的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,沿AE折疊矩形,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,已知AB=8cm,BC=10cm,求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角中,,,是邊上的一個(gè)動(dòng)點(diǎn),正方形是一個(gè)邊長為的動(dòng)正方形,其中點(diǎn)在上,,(與分居的兩側(cè)),正方形與的重疊的面積為.
當(dāng)落在上時(shí),求的值;
當(dāng)不在上時(shí),求與的關(guān)系式;
求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的兩條對角線相交于O,且AC平分∠DAB.
(1)求證:四邊形ABCD是菱形;
(2)若AC=8,BD=6,試求點(diǎn)O到AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+x+2與x軸相交于點(diǎn)A、B,交y軸于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)N,交線段AC于點(diǎn)M.點(diǎn)F是線段MA上的動(dòng)點(diǎn),連接NF,過點(diǎn)N作NG⊥NF交△ABC的邊于點(diǎn)G.
(1)求證:△ABC是直角三角形;
(2)當(dāng)點(diǎn)G在邊BC上時(shí),連接GF,∠NGF的度數(shù)變化嗎?若變化,請說明理由;若不變,請求出∠NGF的正切值;
(3)設(shè)點(diǎn)F的橫坐標(biāo)為n,點(diǎn)G的縱坐標(biāo)為m,在整個(gè)運(yùn)動(dòng)過程中,直接寫出m與n的函數(shù)關(guān)系式,并注明自變量n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)、在反比例函數(shù)上,作等腰直角三角形,點(diǎn)為斜邊的中點(diǎn),連并延長交軸于點(diǎn).
求反比例函數(shù)的解析式;
的面積是多少?
若點(diǎn)在直線上,請求出直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)果如此巧合!
下面是小穎對一道題目的解答.
題目:如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點(diǎn)D,AD=3,BD=4,求△ABC的面積.
解:設(shè)△ABC的內(nèi)切圓分別與AC、BC相切于點(diǎn)E、F,CE的長為x.
根據(jù)切線長定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根據(jù)勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=ACBC
=(x+3)(x+4)
=(x2+7x+12)
=×(12+12)
=12.
小穎發(fā)現(xiàn)12恰好就是3×4,即△ABC的面積等于AD與BD的積.這僅僅是巧合嗎?
請你幫她完成下面的探索.
已知:△ABC的內(nèi)切圓與AB相切于點(diǎn)D,AD=m,BD=n.
可以一般化嗎?
(1)若∠C=90°,求證:△ABC的面積等于mn.
倒過來思考呢?
(2)若ACBC=2mn,求證∠C=90°.
改變一下條件……
(3)若∠C=60°,用m、n表示△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,每天可銷售件,每件贏利元.為了擴(kuò)大銷售,增加贏利,盡快減少庫存,商場決定采取適當(dāng)降價(jià)措施.經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)元,商場每天可多售出件.
如果每件襯衫降價(jià)元,商場每天贏利多少元?
如果商場每天要贏利元,且盡可能讓顧客得到實(shí)惠,每件襯衫應(yīng)降價(jià)多少元?
用配方法說明,每件襯衫降價(jià)多少元時(shí),商場每天贏利最多,最多是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com