【題目】如圖,已知點A(1,2)是反比例函數(shù)y= 圖象上的一點,連接AO并延長交雙曲線的另一分支于點B,點P是x軸上一動點;若△PAB是等腰三角形,則點P的坐標(biāo)是 .
【答案】(﹣3,0)或(5,0)或(3,0)或(﹣5,0)
【解析】解:
∵反比例函數(shù)y= 圖象關(guān)于原點對稱,
∴A、B兩點關(guān)于O對稱,
∴O為AB的中點,且B(﹣1,﹣2),
∴當(dāng)△PAB為等腰三角形時有PA=AB或PB=AB,
設(shè)P點坐標(biāo)為(x,0),
∵A(1,2),B(﹣1,﹣2),
∴AB= =2 ,PA= ,PB= ,
當(dāng)PA=AB時,則有 =2 ,解得x=﹣3或5,此時P點坐標(biāo)為(﹣3,0)或(5,0);
當(dāng)PB=AB時,則有 =2 ,解得x=3或﹣5,此時P點坐標(biāo)為(3,0)或(﹣5,0);
綜上可知P點的坐標(biāo)為(﹣3,0)或(5,0)或(3,0)或(﹣5,0),
所以答案是:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).
【考點精析】掌握等腰三角形的性質(zhì)是解答本題的根本,需要知道等腰三角形的兩個底角相等(簡稱:等邊對等角).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張直角三角形紙片ABC,∠C=90°,AB=24,tanB= (如圖),將它折疊使直角頂點C與斜邊AB的中點重合,那么折痕的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△COD是△AOB繞點O順時針方向旋轉(zhuǎn)30°后所得的圖形,點C恰好在AB上,∠AOD=90°.
(1)∠B的度數(shù)是;
(2)若AO= ,CD與OB交于點E,則BE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運(yùn)動到點C停止,設(shè)點P的運(yùn)動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關(guān)于x(cm)的函數(shù)關(guān)系的圖象是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點F是DA延長線的一點,AC平分∠FAB交⊙O于點C,過點C作CE⊥DF,垂足為點E.
(1)求證:CE是⊙O的切線;
(2)若AE=1,CE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是正方形ABCD中CD邊上一點,以點A為中心把△ADE順時針旋轉(zhuǎn)90°.
(1)在圖中畫出旋轉(zhuǎn)后的圖形;
(2)若旋轉(zhuǎn)后E點的對應(yīng)點記為M,點F在BC上,且∠EAF=45°,連接EF. ①求證:△AMF≌△AEF;
②若正方形的邊長為6,AE=3 ,求EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)圖象過點(﹣1,0),頂點為(1,2),則結(jié)論:
①abc>0;②x=1時,函數(shù)最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.
其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com