【題目】一張直角三角形紙片ABC,∠C=90°,AB=24,tanB= (如圖),將它折疊使直角頂點(diǎn)C與斜邊AB的中點(diǎn)重合,那么折痕的長為 .
【答案】13
【解析】解:∵CD是斜邊AB上的中線, ∴DC=DB= AB=12,
∴∠DCB=∠B,
由題意得,EF是CD的垂直平分線,
∴∠OEC+∠OCE=90°,又∠DCB+∠OCE=90°,
∴∠OEC=∠B,
設(shè)CF=2x,則CE=3x,
由勾股定理得,EF= x,
×2x×3x= × x×6,
解得,x= ,
∴EF= × =13,
所以答案是:13.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解翻折變換(折疊問題)的相關(guān)知識,掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若直線l的極坐標(biāo)方程為 ,曲線C的極坐標(biāo)方程為:ρsin2θ=cosθ,將曲線C上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線C1 . (Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點(diǎn),點(diǎn)P(2,0),求|PA|+|PB|的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,D是斜邊AB上的中點(diǎn),E是邊BC上的點(diǎn),AE與CD交于點(diǎn)F,且AC2=CECB.
(1)求證:AE⊥CD;
(2)連接BF,如果點(diǎn)E是BC中點(diǎn),求證:∠EBF=∠EAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一段斜坡路面的截面圖如圖所示,BC⊥AC,其中坡面AB的坡比i1=1:2,現(xiàn)計劃削坡放緩,新坡面的坡角為原坡面坡腳的一半,求新坡面AD的坡比i2(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是AB邊上一點(diǎn),過點(diǎn)D作DE∥BC,交AC于E,點(diǎn)F是DE延長線上一點(diǎn),聯(lián)結(jié)AF.
(1)如果 ,DE=6,求邊BC的長;
(2)如果∠FAE=∠B,F(xiàn)A=6,F(xiàn)E=4,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AC與BD相交于點(diǎn)O,AC=BC,點(diǎn)E在DC的延長線上,∠BEC=∠ACB,已知BC=9,cos∠ABC= .
(1)求證:BC2=CDBE;
(2)設(shè)AD=x,CE=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)如果△DBC∽△DEB,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中xOy中,拋物線y=﹣x2+bx+c與x軸相交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸相交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為點(diǎn)D,聯(lián)結(jié)AC,BC,DB,DC.
(1)求這條拋物線的表達(dá)式及頂點(diǎn)D的坐標(biāo);
(2)求證:△ACO∽△DBC;
(3)如果點(diǎn)E在x軸上,且在點(diǎn)B的右側(cè),∠BCE=∠ACO,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極倡導(dǎo)學(xué)生展示自我,發(fā)展綜合素質(zhì),在新學(xué)期舉辦的校園文化藝術(shù)節(jié)中,學(xué)生可以在舞蹈、器樂、聲樂、小品、播音主持五個類別中挑選一項(xiàng)報名參加比賽,八年級學(xué)生小明從本年級學(xué)生各個類別的報名登記表中隨機(jī)抽取了一部分學(xué)生的報名情況進(jìn)行整理,并制作了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請解答下列問題:
(1)小明隨機(jī)抽取了名學(xué)生的報名情況進(jìn)行整理,扇形統(tǒng)計圖中,表示E類別部分的扇形的圓心角度數(shù)為度;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)小華認(rèn)為如果知道八年級報名參加比賽的總?cè)藬?shù),則根據(jù)小明制作的統(tǒng)計圖就可以估算出八年級報名參加聲樂比賽的人數(shù).小明認(rèn)為如果知道初中三個年級報名參加比賽的總?cè)藬?shù),則根據(jù)自己制作的統(tǒng)計圖也可以估算出整個初中年級報名參見聲樂比賽的人數(shù).你認(rèn)為他倆的看法對嗎?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(1,2)是反比例函數(shù)y= 圖象上的一點(diǎn),連接AO并延長交雙曲線的另一分支于點(diǎn)B,點(diǎn)P是x軸上一動點(diǎn);若△PAB是等腰三角形,則點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com