【題目】 在△ABC中,∠A=40°.
(1)如圖(1)BO、CO是△ABC的內角角平分線,且相交于點O,求∠BOC;
(2)如圖(2)若BO、CO是△ABC的外角角平分線,且相交于點O,求∠BOC;
(3)如圖(3)若BO、CO分別是△ABC的一內角和一外角角平分線,且相交于點O,求∠BOC;
(4)根據(jù)上述三問的結果,當∠A=n°時,分別可以得出∠BOC與∠A有怎樣的數(shù)量關系(只需寫出結論).
【答案】(1)110°;(2)70°;(3)20°;(4)分別是90°+ °;90°- °;°
【解析】試題分析:(1)首先根據(jù)三角形的內角和定理,求得∠ABC+∠ACB,再根據(jù)角平分線的概念,求得∠OBC+∠OCB,最后根據(jù)三角形的內角和定理求得∠BOC= 110°;(2)如圖2,根據(jù)角平分線的定義和三角形外角的性質得∠DBC=2∠1=∠ACB+∠A,∠ECB=2∠2=∠ABC+∠A,所以2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,再由∠1+∠2+∠BOC=180°可得2∠BOC=180°-∠A,即∠BOC=90°- ∠A=90°-20°=70°;(3)如圖3,由BO和CO分別是∠ABC和∠ACD的角平分線,可得∠1= ∠ABC,∠2= ∠ACD,根據(jù)三角形外角的性質可得∠ACD=∠A+∠ABC,即可得∠2= (∠A+∠ABC)= ∠A+∠1,再由三角形外角的性質可得∠BOC=∠2﹣∠1= ∠A+∠1﹣∠1= ∠A=×40°=20°;(4)利用以上結論直接得出答案即可.
試題解析:
(1)∵∠A=40°,
∴∠ABC+∠ACB=180°-40°=140°.
∵BO、CO分別是∠ABC、∠ACB的角平分線,
∴∠OBC+∠OCB= ∠ABC+∠ACB)=×140°=70°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-70°=110°;
(2)∵BO、CO分別是△ABC的外角∠DBC、∠ECB的角平分線,
∴∠DBC=2∠1=∠ACB+∠A,
∠ECB=2∠2=∠ABC+∠A,
∴2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,
又∵∠1+∠2+∠BOC=180°,
∴2∠BOC=180°-∠A,
∴∠BOC=90°- ∠A=90°-20°=70°.
圖2
(3)如圖3,
∵BO和CO分別是∠ABC和∠ACD的角平分線,
∴∠1= ∠ABC,∠2= ∠ACD,
又∵∠ACD是△ABC的一外角,
∴∠ACD=∠A+∠ABC,
∴∠2= (∠A+∠ABC)= ∠A+∠1,
∵∠2是△BOC的一外角,
∴∠BOC=∠2﹣∠1= ∠A+∠1﹣∠1= ∠A=×40°=20°.
(4)分別是90°+ °;90°- °;°
科目:初中數(shù)學 來源: 題型:
【題目】如果點P(﹣3,b)在第三象限內,則b( )
A. 是正數(shù) B. 是負數(shù)
C. 是0 D. 可以是正數(shù),也可以是負數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.
(1)求證:∠ACF=∠ABD;
(2)連接EF,求證:EFCG=EGCB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+1與x軸的正半軸交于點A和點B,與y軸交于點C,且OB=3OC,點P是第一象限內的點,連接BC,△PBC是以BC為斜邊的等腰直角三角形.
(1)求這個拋物線的表達式;
(2)求點P的坐標;
(3)點Q在x軸上,若以Q、O、P為頂點的三角形與以點C、A、B為頂點的三角形相似,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°,
(1)求證;BF∥DE.
(2)如果DE垂直于AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從小華家到姥姥家,有一段上坡路和一段下坡路.星期天,小華騎自行車去姥姥家,如果保持上坡每小時行3km,下坡每小時行5km,他到姥姥家需要行66分鐘,從姥姥家回來時需要行78分鐘才能到家.那么,從小華家到姥姥家上坡路和下坡路各有多少千米,姥姥家離小華家有多遠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銳角三角形ABC中,直線L為BC的中垂線,直線M為∠ABC的角平分線,L與M相交于P點.若∠A=60°,∠ACP=24°,則∠ABP的度數(shù)為何?( )
A. 24° B. 30° C. 32° D. 36°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com