【題目】已知DE⊥AC,BF⊥AC,垂足分別是E、F,AE=CF,DC∥AB,

(1)試證明:DE=BF;

(2)連接DF、BE,猜想DF與BE的關(guān)系?

【答案】見解析

【解析】(1)求出AF=CE,∠AFB=∠DEC=90°,根據(jù)平行線的性質(zhì)得出∠DCE=∠BAF,根據(jù)ASA推出△AFB≌△CED即可;

(2)(2)根據(jù)平行四邊形的判定得出四邊形DEBF是平行四邊形,再根據(jù)平行四邊形的性質(zhì)得出即可.

(1)證明:∵AE=CF,

∴AE+EF=CF+EF,

∴AF=CE,

∵DE⊥AC,BF⊥AC,

∴∠AFB=∠DEC=90°,

∵DC∥AB,

∴∠DCE=∠BAF,

△AFB△CED

∴△AFB≌△CED,

∴DE=BF;

(2)如圖所示:

猜想:DF=BE,DF∥BE,

證明:∵DE⊥AC,BF⊥AC,

∴DE∥BF,

∵DE=BF,

四邊形DEBF是平行四邊形,

∴DF=BE,DF∥BE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點,且AE=BC,∠1=∠2.

(1)證明:AB=AD+BC;

(2)判斷△CDE的形狀?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊長方體木塊的各棱長如圖所示,一只蜘蛛在木塊的一個頂點A處,一只蒼蠅在這個長方體上和蜘蛛相對的頂點B處,蜘蛛急于捉住蒼蠅,沿著長方體的表面向上爬.

(1)如果D是棱的中點,蜘蛛沿“AD→DB”路線爬行,它從A點爬到B點所走的路程為多少?

(2)你認(rèn)為“AD→DB”是最短路線嗎?如果你認(rèn)為不是,請計算出最短的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程:①3x﹣1=2x+1, ,x﹣1=x中,解為x=2的是方程(  )

A. 、②和③ B. 、③和④ C. 、③和④ D. 、②和④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣1,0,1,3,4,這五個數(shù)中任選一個數(shù)記為a,則使雙曲線y= 在第一、三象限且不等式組 無解的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件工程甲獨做50天可完,乙獨做75天可完,現(xiàn)在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了(  )天.

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,足球是世界上第一大運動,你熱愛足球運動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負(fù)一場得0分,一隊共踢了30場比賽,負(fù)了9場,共得47分,那么這個隊勝了( 。

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是兩張不同類型火車的車票(表示動車,表示高鐵):

1根據(jù)車票中的信息填空:該列動車和高鐵是__________向而行(填).

2已知該列動車和高鐵的平均速度分別為、,兩列火車的長度不計.

①經(jīng)過測算,如果兩列火車直達(dá)終點(即中途都不?咳魏握军c),高鐵比動車將早到,求兩地之間的距離.

②在①中測算的數(shù)據(jù)基礎(chǔ)上,已知、兩地途中依次設(shè)有個站點、、、,且,動車每個站點都停靠,高鐵只?、兩個站點,兩列火車在每個停靠站點都停留.求該列高鐵追上動車的時刻.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A地將一批物品運往B地,再返回A地,圖6表示兩車離A地的距離s(千米)隨時間t(小時)變化的圖象,已知乙車到達(dá)B地后以30千米/小時的速度返回.請根據(jù)圖象中的數(shù)據(jù)回答:

(1)甲車出發(fā)多長時間后被乙車追上?

(2)甲車與乙車在距離A地多遠(yuǎn)處迎面相遇?

(3)甲車從B地返回的速度多大時,才能比乙車先回到A地?

查看答案和解析>>

同步練習(xí)冊答案