【題目】已知方程:①3x﹣1=2x+1,② ,③ ,④x﹣1=x中,解為x=2的是方程( 。
A. ①、②和③ B. ①、③和④ C. ②、③和④ D. ①、②和④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是⊙O上一點,⊙O的半徑為 ,D、E分別是弦AC、BC上一動點,且OD=OE= ,則AB的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)解不等式組 ,并寫出不等式組的整數(shù)解.
(2)化簡分式:( ﹣ )÷ ,再從﹣2<x<3的范圍內(nèi)選取一個你最喜歡的值代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七中育才學(xué)校排球活動月即將開始,其中有一項為墊球比賽,體育組為了了解七年級學(xué)生的訓(xùn)練情況,隨機(jī)抽取了七年級部分學(xué)生進(jìn)行1分鐘墊球測試,并將這些學(xué)生的測試成績(即1分鐘的個數(shù),且這些測試成績都在60~180范圍內(nèi))分段后給出相應(yīng)等級,具體為:測試成績在60~90范圍內(nèi)的記為D級,90~120范圍內(nèi)的記為C級,120~150范圍內(nèi)的記為B級,150~180范圍內(nèi)的記為A級.現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖,其中在扇形統(tǒng)計圖中A級對應(yīng)的圓心角為90°,請根據(jù)圖中的信息解答下列問題:
(1)在扇形統(tǒng)計圖中,A級所占百分比為 ;
(2)在這次測試中,一共抽取了 名學(xué)生,并補(bǔ)全頻數(shù)分布直方圖;
(3)在(2)中的基礎(chǔ)上,在扇形統(tǒng)計圖中,求D級對應(yīng)的圓心角的度數(shù);
(4)若A,B,C,D等級的平均成績分別為165、135、105、75個,你能估算出學(xué)校七年級同學(xué)的平均水平嗎?若能,請計算出來.(保留準(zhǔn)確值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(4分)如圖,直線l外不重合的兩點A、B,在直線l上求作一點C,使得AC+BC的長度最短,作法為:①作點B關(guān)于直線l的對稱點B′;②連接AB′與直線l相交于點C,則點C為所求作的點.在解決這個問題時沒有運用到的知識或方法是( )
A.轉(zhuǎn)化思想
B.三角形的兩邊之和大于第三邊
C.兩點之間,線段最短
D.三角形的一個外角大于與它不相鄰的任意一個內(nèi)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知DE⊥AC,BF⊥AC,垂足分別是E、F,AE=CF,DC∥AB,
(1)試證明:DE=BF;
(2)連接DF、BE,猜想DF與BE的關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB邊上一動點,PD⊥AC于點D,點E在P的右側(cè),且PE=1,連結(jié)CE.P從點A出發(fā),沿AB方向運動,當(dāng)E到達(dá)點B時,P停止運動.在整個運動過程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A.一直減小
B.一直不變
C.先減小后增大
D.先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個直角∠AOC和∠BOD有公共頂點O,下列結(jié)論:
①∠AOB=∠COD;
②∠AOB+∠COD=;
③若OB平分∠AOC,則OC平分∠BOD;
④∠AOD的平分線與∠BOC的平分線是同一條射線,
其中正確的是 .(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com