【題目】如圖,在平面直角坐標(biāo)系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當(dāng)△ABM是等腰三角形時,M點的坐標(biāo)為_____.
【答案】(4,6),(8﹣2,6),(2,6).
【解析】
分別取三個點作為定點,然后根據(jù)勾股定理和等腰三角形的兩個腰相等來判斷是否存在符合題意的M的坐標(biāo).
解:當(dāng)M為頂點時,AB長為底=8,M在DC中點上,
所以M的坐標(biāo)為(4, 6),
當(dāng)B為頂點時,AB長為腰=8,M在靠近D處,根據(jù)勾股定理可知ME==2
所以M的坐標(biāo)為(8﹣2,6);
當(dāng)A為頂點時,AB長為腰=8,M在靠近C處,根據(jù)勾股定理可知MF==2
所以M的坐標(biāo)為(2,6);
綜上所述,M的坐標(biāo)為(4,6),(8﹣2,6),(2,6);
故答案為:(4,6),(8﹣2,6),(2,6).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD的延長線交于點F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線.
(2)若CD=2,OP=1,求線段BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P是⊙O外的一點,OP=4,OP交⊙O于點A,且A是OP的中點,Q是⊙O上任意一點.
(1)如圖1,若PQ是⊙O的切線,求∠QOP的大。
(2)如圖2,若∠QOP=90°,求PQ被⊙O截得的弦QB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:
問題情境:
如圖 1,AB∥CD,∠PAB=25°,∠PCD=37°,求∠APC的度數(shù),小明的思路是:過點P作PE∥AB,通過平行線性質(zhì)來求∠APC
問題解決:
(1)按小明的思路,易求得∠APC 的度數(shù)為 °;
問題遷移:
如圖 2,AB∥CD,點 P 在射線 OM 上運動,記∠PAB=α,∠PCD=β.
(2)當(dāng)點 P 在 B,D 兩點之間運動時,問∠APC 與α,β 之間有何數(shù)量關(guān)系? 請說明理由;
拓展延伸:
(3)在(2)的條件下,如果點 P 在 B,D 兩點外側(cè)運動時 (點 P 與點 O,B,D 三點不重合)請你直接寫出當(dāng)點 P 在線段 OB 上時,∠APC 與 α,β 之間的數(shù)量關(guān)系 ,點 P 在射線 DM 上時,∠APC 與 α,β 之間的數(shù)量關(guān)系 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的各邊,在邊BC的同側(cè)分別作三個正方形ABDI,BCFE,ACHG.
(1)求證:△BDE≌△BAC;
(2)求證:四邊形ADEG是平行四邊形.
(3)直接回答下面兩個問題,不必證明:
①當(dāng)△ABC滿足條件_____________________時,四邊形ADEG是矩形.
②當(dāng)△ABC滿足條件_____________________時,四邊形ADEG是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,AC=,點D為BC邊上一點,且BD=AD,∠ADC=60°,則△ABC的周長為_____.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△OAB的頂點A、B的坐標(biāo)分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線于點C,連結(jié)AC,以點A為圓心,AC為半徑畫弧交x軸負(fù)半軸于點D,連結(jié)AD、CD.
(1)求證:△ABC≌△AOD.
(2)設(shè)△ACD的面積為,求關(guān)于的函數(shù)關(guān)系式.
(3)若四邊形ABCD恰有一組對邊平行,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為6,點A,B,C為⊙O上三點,BA平分∠OBC,過點A作AD⊥BC交BC延長線于點D.
(1)求證:AD是⊙O的切線;
(2)當(dāng)sin∠OBC=時,求BC的長;
(3)連結(jié)AC,當(dāng)AC∥OB時,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com