【題目】如圖,直線y=2x﹣4分別交坐標(biāo)軸于A、B兩點,交雙曲線y=(x>0)于C點,且sin∠COB=;
(1)求雙曲線的解析式;
(2)若過點B的直線y=ax+b(a>0)交y軸于D點,交雙曲線于點E,且OD:AD=1:2,求E點橫坐標(biāo).
【答案】(1)y=;(2)E的橫坐標(biāo)為1+.
【解析】
(1)根據(jù)題意設(shè)出點C的坐標(biāo),由sin∠COB=可以求得點C的坐標(biāo),進而可以求得雙曲線的解析式;
(2)根據(jù)y=2x﹣4求得A、B的坐標(biāo),OD:AD=1:2,可知D的坐標(biāo),根據(jù)待定系數(shù)法求得BD的解析式,聯(lián)立解析式即可求出E橫坐標(biāo).
解:(1)設(shè)點C的坐標(biāo)是(a,2a﹣4),
∵sin∠COB=,
∴tan∠COB=,
解得,a=6,
∴點C為(6,8),
∵點C在雙曲線y=上,
∴k=6×8=48,
即雙曲線的解析式為:y=;
(2)∵直線y=ax+b(a>0)交y軸于D點,
∴點D的坐標(biāo)是(0,b),
∵直線y=2x﹣4分別交坐標(biāo)軸于A、B兩點,
∴點A的坐標(biāo)是(0,﹣4),B(2,0),
∵OD:AD=1:2,
∴OD=,
∴D(0,),
把B(2,0),D(0,)代入y=ax+b得,
解得,
∴,
解得(舍去),
∴E的橫坐標(biāo)為1+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在OA邊上的點E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.
(1)求點E坐標(biāo)及經(jīng)過O,D,C三點的拋物線的解析式;
(2)一動點P從點C出發(fā),沿CB以每秒2個單位長的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長的速度向點C運動,當(dāng)點P到達點B時,兩點同時停止運動.設(shè)運動時間為t秒,當(dāng)t為何值時,DP=DQ;
(3)若點N在(2)中的拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使得以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請求出M點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA是⊙O的切線,切點為A,AC是⊙O的直徑,連接OP交⊙O于E.過A點作AB⊥PO于點D,交⊙O于B,連接BC,PB.
(1)求證:PB是⊙O的切線;
(2)求證:E為△PAB的內(nèi)心;
(3)若cos∠PAB=,BC=1,求PO的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BCD=90°,且BC=DC,直線PQ經(jīng)過點D.設(shè)∠PDC=α(45°<α<135°),BA⊥PQ于點A,將射線CA繞點C按逆時針方向旋轉(zhuǎn)90°,與直線PQ交于點E.
(1)當(dāng)α=125°時,∠ABC= °;
(2)求證:AC=CE;
(3)若△ABC的外心在其內(nèi)部,直接寫出α的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來積累利潤S(萬元)與銷售時間t(月)之間的關(guān)系(即前t個月的利潤總和S與t之間的關(guān)系).
根據(jù)圖象提供的信息,解答下列問題:
(1)由已知圖象上的三點坐標(biāo),求累積利潤S(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
(2)求第8個月公司所獲利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與x軸,y軸分別交于A,B兩點,且與反比例函數(shù)y=(x>0)的圖象交于點C,若S△AOB=S△BOC=1,則k=( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的解析式y=ax2+bx+3與x軸交于A、B兩點,點B的坐標(biāo)為(﹣1,0)拋物線與y軸正半軸交于點C,△ABC面積為6.
(1)如圖1,求此拋物線的解析式;
(2)P為第一象限拋物線上一動點,過P作PG⊥AC,垂足為點G,設(shè)點P的橫坐標(biāo)為t,線段PG的長為d,求d與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)如圖2,在(2)的條件下,過點B作CP的平行線交y軸上一點F,連接AF,在BF的延長線上取點E,連接PE,若PE=AF,∠AFE+∠BEP=180°,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標(biāo)為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫出不等式﹣x+b>的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com