【題目】二次函數(shù)為常數(shù),)的圖象記為L

1)若=1,=3,求圖象L的頂點坐標;

2)若圖象L過點(41),且2a5,求的最大值;

3)若,點,在圖象L上,當時,恒成立,求的取值范圍.

【答案】1)(-1,-4);(2;(30a或-1a0

【解析】

1)把a,b代入函數(shù)即可求解;

2)把(4,1)代入函數(shù)得,再根據a的取值即可求出b的最大值;

3)把代入函數(shù)得,對稱軸,分a0,和a0,根據函數(shù)的性質列出不等式即可求解.

1)若1,3,則

圖象L的頂點坐標為(-1,-4

2)若圖象L過點(41),則

化簡得,

∵2≤a≤5ba的增大而減少,

a2時,b的最大值=

3)若,則,圖象的對稱軸為直線

時,恒成立,

a0時,,解得0a;

a0時,,解得-1≤a0

的取值范圍為0a或-1≤a0

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:有這樣一個問題:關于的一元二次方程有兩個不相等的且非零的實數(shù)根探究,滿足的條件.

小明根據學習函數(shù)的經驗,認為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過程:①設一元二次方程對應的二次函數(shù)為

②借助二次函數(shù)圖象,可以得到相應的一元二次中,滿足的條件,列表如下:

方程根的幾何意義:

方程兩根的情況

對應的二次函數(shù)的大致圖象

,滿足的條件

方程有兩個不相等的負實根

____________

方程有兩個不相等的正實根

____________

____________

1)參考小明的做法,把上述表格補充完整;

2)若一元二次方程有一個負實根,一個正實根,且負實根大于-1,求實數(shù)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在信息技術飛速發(fā)展的今天,智能手機的使用呈現(xiàn)出低齡化的趨勢,中小學生使用智能手機成為十分普遍的現(xiàn)象,但智能手機給生活帶來便利的同時,也對中小學生的身心發(fā)展帶來一些不利影響,比如手機屏幕對視力的傷害、關注各種“垃圾新聞”對時間的浪費、沉迷手機游戲缺少運動、人際交往等等,這些現(xiàn)象引起了家長、學校、社會的廣泛關注.對此,成都某中學學生會發(fā)出了“中小學生使用非智能手機”的倡議,鼓勵同學們全面發(fā)展,追逐夢想,把更多時間用在將來能夠成就自我的地方.據統(tǒng)計,今年9月該中學使用非智能手機的同學有128人,倡議發(fā)出后,11月使用非智能手機的同學上升到了200人.

1)若從9月到11月使用非智能手機的同學平均增長率相同,那么按此增長率增長到12月份該校使用非智能手機的同學將有多少人?

2)某于機制造商發(fā)現(xiàn)當下市場上售賣的非智能手機大多品質不佳、外觀設計成就,難以滿足市場的需要,所以該廠決定投入12萬元全部用于生產型、型兩款精美的“學生專用手機”投入市場,一部型手機生產成本為400元,售價為600元;一部型手機生產成本為600元,售價為930元,該廠計劃生產型手機的數(shù)量不少于型手機數(shù)量的2倍,但不超過型手機數(shù)量的2.3倍,求生產這批手機并全部售賣后可獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某種月餅形狀的俯視圖如圖1所示,該形狀由1個正六邊形和6個半圓組成,半圓直徑與正六邊形的邊長相等.

現(xiàn)商家設計了2種棱柱體包裝盒,其底面分別為矩形和正六邊形(如圖2和圖3)我們可從底面的利用率來記算整個包裝盒的利用情況.(底面利用率=×100%)

1)請分別計算出圖2與圖3中的底面利用率(結果保留到0.1%)

2)考慮到節(jié)約成本,商家希望底面利用率能夠不低于80%,且底面圖形仍然采用最基本的幾何形狀,請問商家的要求是否能夠滿足,若可以滿足,請設計一種方案,并直接寫出此時的利用率;若不能滿足,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸相交于點A、B,且過點C(4,3).

(1)求的值和該拋物線頂點P的坐標;

(2)將該拋物線向左平移,記平移后拋物線的頂點為P′,當四邊形APPB為平行四邊形時,求平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的對角線相交于O,點P在射線AO上,∠MPN=90°.

1)如圖1,當P與點O重合,M、N分別在AD、AB上,AM=2DM,則=__________;

2)如圖2,點PCO上,AP=2CP,MAD的中點,求的值.

3)如圖3,PAC的延長線上,MAD的中點,AP=nCP,則=____________(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小王在長江邊某瞭望臺D處測得江面上的漁船A的俯角為40°,若DE3米,CE2米,CE平行于江面AB,迎水坡BC的坡度i10.75,坡長BC10米,則此時AB的長約為多少米?(結果精確到0.1,參考數(shù)據:sin40°≈0.64,cos40°≈0.77tan40°≈0.84

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD為邊BC上的中線,且AD平分∠BAC.嘉淇同學先是以A為圓心,任意長為半徑畫弧,交AD于點P,交AC于點Q,然后以點C為圓心,AP長為半徑畫弧,交AC于點M,再以M為圓心,PQ長為半徑畫弧,交前弧于點N,作射線CN,交BA的延長線于點E

1)通過嘉淇的作圖方法判斷ADCE的位置關系是  ,數(shù)量關系是  ;

2)求證:ABAC;

3)若BC24,CE10,求△ABC的內心到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線過O、A、B三點,A(4,0)B(1,-3),P為拋物線上一點,過點P的直線y=x+m與對稱軸交于點Q.

(1)直線PQ與x軸所夾銳角的度數(shù),并求出拋物線的解析式.

(2)當點P在x軸下方的拋物線上時,過點C(2,2)的直線AC與直線PQ交于點D,求: PD+DQ的最大值;②PD.DQ的最大值.

查看答案和解析>>

同步練習冊答案