科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C,與x軸交于A,B兩點,其中點B的坐標為B(4,0),拋物線的對稱軸交x軸于點D,CE∥AB,并與拋物線的對稱軸交于點E.現(xiàn)有下列結(jié)論:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正確結(jié)論的序號是( )
A.①②B.①③C.②③D.②④
查看答案和解析>>
科目: 來源: 題型:
【題目】在同一直角坐標系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2 (m是常數(shù),且m≠0)的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面上,對于給定的線段AB和點C,若平面上的點P(可以與點C重合)滿足,∠APB=∠ACB.則稱點P為點C關(guān)于直線AB的聯(lián)絡(luò)點.
在平面直角坐標系xOy中,已知點A(2,0),B(0,2),C(﹣2,0).
(1)在P1(2,2),P(1,0),R(1+,1)三個點中,是點O關(guān)于線段AB的聯(lián)絡(luò)點的是 .
(2)若點P既是點O關(guān)于線段AB的聯(lián)絡(luò)點,同時又是點B關(guān)于線段OA的聯(lián)絡(luò)點,求點P的橫坐標m的取值范圍;
(3)直線y=x+b(b>0)與x軸,y軸分交于點M,N,若在線段BC上存在點N關(guān)于線段OM的聯(lián)絡(luò)點,直接寫出b的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是等邊三角形,平面上的動點P滿足PC⊥AB,記∠APB=α.
(1)如圖1,當(dāng)點P在直線BC上方時,直接寫出∠PAC的大。ㄓ煤α的代數(shù)式表示);
(2)過點B作BC的垂線BD,同時作∠PAD=60°,射線AD與直線BD交于點D.
①如圖2,判斷△ADP的形狀,并給出證明;
②連結(jié)CD,若在點P的運動過程中,CD=AB.直接寫出此時α的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線的對稱軸與x軸交于點A.
(1)A的坐標為 (用含a的代數(shù)式表示);
(2)若拋物線與x軸交于P,Q兩點,且PQ=2,求拋物線的解析式.
(3)點B的坐標為,若該拋物線與線段AB恰有一個公共點,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點A的直線PC交⊙O于A,C兩點,AD平分∠PAB,射線AD交⊙O于點D,過點D作DE⊥PA于點E.
(1)求證:ED為⊙O的切線;
(2)若AB=10,ED=2AE,求AC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y1=x2﹣bx+c與直線y2=kx+m相交于A(﹣1,0),B(3,4)兩點.
(1)請分別求出拋物線解析式和直線的解析式;
(2)直接寫出y1﹣y2的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點C是半圓O上的一點,AB是⊙O的直徑,D是的中點,作DE⊥AB于點E,連接AC交DE于點F,求證:AF=DF.
下面是小明的做法,請幫他補充完整(包括補全圖形)
解:補全半圓O為完整的⊙O,連接AD,延長DE交⊙O于點H(補全圖形)
∵D是的中點,
∴.
∵DE⊥AB,AB是⊙O的直徑,
∴( )(填推理依據(jù))
∴
∴∠ADF=∠FAD( )(填推理依據(jù))
∴AF=DF( )(填推理依據(jù))
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點D是等邊三角形ABC的邊BC上一點,以AD為邊作等邊△ADE,連接CE.
(1)求證:;
(2)若∠BAD=20°,求∠AEC的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,線段AB為⊙O的一條弦,以AB為直角邊作等腰直角△ABC,直線AC恰好是⊙O的切線,點D為⊙O上的一點,連接DA,DB,DC,若DA=3,DB=4,則DC的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com