科目: 來(lái)源: 題型:
【題目】今年某市為創(chuàng)評(píng)“全國(guó)文明城市”稱號(hào),周末團(tuán)市委組織志愿者進(jìn)行宣傳活動(dòng).班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過(guò)抽簽的方式確定2名女生去參加.
抽簽規(guī)則:將4名女班干部姓名分別寫(xiě)在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機(jī)抽取一張卡片,記下姓名,再?gòu)氖S嗟?/span>3張卡片中隨機(jī)抽取第二張,記下姓名.
(1)該班男生“小剛被抽中”是 事件,“小悅被抽中”是 事件(填“不可能”或“必然”或“隨機(jī)”);第一次抽取卡片“小悅被抽中”的概率為 ;
(2)試用畫(huà)樹(shù)狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出“小惠被抽中”的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】下面是小東設(shè)計(jì)的“過(guò)圓外一點(diǎn)作這個(gè)圓的兩條切線”的尺規(guī)作圖過(guò)程.
已知:⊙O及⊙O外一點(diǎn)P.
求作:直線PA和直線PB,使PA切⊙O于點(diǎn)A,PB切⊙O于點(diǎn)B.
作法:如圖,
①連接OP,分別以點(diǎn)O和點(diǎn)P為圓心,大于OP的同樣長(zhǎng)為半徑作弧,兩弧分別交于點(diǎn)M,N;
②連接MN,交OP于點(diǎn)Q,再以點(diǎn)Q為圓心,OQ的長(zhǎng)為半徑作弧,交⊙O于點(diǎn)A和點(diǎn)B;
③作直線PA和直線PB.
所以直線PA和PB就是所求作的直線.
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OP是⊙Q的直徑,
∴ ∠OAP=∠OBP=________°( )(填推理的依據(jù)).
∴PA⊥OA,PB⊥OB.
∵OA,OB為⊙O的半徑,
∴PA,PB是⊙O的切線.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=6,點(diǎn)D是BC邊上一動(dòng)點(diǎn)(不與B、C重合),過(guò)點(diǎn)D作DE⊥BC交AB邊于點(diǎn)E,將∠B沿直線DE翻折,點(diǎn)B落在射線BC上的點(diǎn)F處,當(dāng)△AEF為直角三角形時(shí),BD的長(zhǎng)為_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,△ABC為等邊三角形,AB=3,若點(diǎn)P為△ABC內(nèi)一動(dòng)點(diǎn),且滿足∠PAB=∠ACP,則線段PB長(zhǎng)度的最小值為_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象交軸于點(diǎn),交軸于點(diǎn),點(diǎn)在線段上(不與點(diǎn),重合)過(guò)點(diǎn)分別作和的垂線,垂足為,.
(1)關(guān)于矩形面積的探究:
①點(diǎn)在何處時(shí),矩形的面積為1?寫(xiě)出計(jì)算過(guò)程;
②是否存在一點(diǎn),能使矩形的面積為?說(shuō)說(shuō)你的理由.
(2)設(shè)點(diǎn)的坐標(biāo)是,,圖中陰影部分的面積為,嘗試完成下列問(wèn)題:
①建立與的關(guān)系式,并類比一次函數(shù)猜想是的什么函數(shù),能否對(duì)此類函數(shù)下一個(gè)描述性的定義,其中包含它的一般形式;
②我們知道代數(shù)式有最小值9,試問(wèn)當(dāng)在何處時(shí)有最小值,請(qǐng)把你的理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】一個(gè)小風(fēng)箏與一個(gè)大風(fēng)等形狀完全相同,它們的形狀如圖所示,其中對(duì)角線AC⊥BD.已知它們的對(duì)應(yīng)邊之比為1:3,小風(fēng)箏兩條對(duì)角線的長(zhǎng)分別為12cm和14cm.
(1)小風(fēng)箏的面積是多少?
(2)如果在大風(fēng)箏內(nèi)裝設(shè)一個(gè)連接對(duì)角頂點(diǎn)的十字交叉形的支撐架,那么至少需用多長(zhǎng)的材料?(不記損耗)
(3)大風(fēng)箏要用彩色紙覆蓋,而彩色紙是從一張剛好覆蓋整個(gè)風(fēng)箏的矩形彩色紙(如圖中虛線所示)裁剪下來(lái)的,那么從四個(gè)角裁剪下來(lái)廢棄不用的彩色紙的面積是多少?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,大樓AB高16m,遠(yuǎn)處有一塔CD,某人在樓底B處測(cè)得塔頂C的仰角為38.5°,在樓頂A處測(cè)得塔頂?shù)难鼋菫?2°,求塔高CD的高及大樓與塔之間的距離BC的長(zhǎng).
(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】小穎、小明、小亮在解方程時(shí),解法各不相同,請(qǐng)你回答下列問(wèn)題:
(1)簡(jiǎn)要分析一下三位同學(xué)的解法是否正確.如果正確,他運(yùn)用了哪種解一元二次方程的方法;如果錯(cuò)誤,錯(cuò)誤的原因是什么?你是否從中體會(huì)到解一元二次方程的數(shù)學(xué)思想是什么?
(2)請(qǐng)你選擇一種你熟練的方法嘗試解一元二次方程.
由方程,得 因此,, 所以這個(gè)數(shù)是0或3 | 方程兩邊同時(shí)約去,得:所以這個(gè)數(shù)是3 |
由方程,得 即.于是, 或.因此, 所以這個(gè)數(shù)是0或3. |
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,等腰直角△OEF在坐標(biāo)系中,有E(0,2),F(﹣2,0),將直角△OEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到△ADE,且A在第一象限內(nèi),拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A,E.且2a+3b+5=0.
(1)求拋物線的解析式.
(2)過(guò)ED的中點(diǎn)O'作O'B⊥OE于B,O'C⊥OD于C,求證:OBO'C為正方形.
(3)如果點(diǎn)P由E開(kāi)始沿EA邊以每秒2厘米的速度向點(diǎn)A移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)A沿AD邊以每秒1厘米的速度向點(diǎn)D移動(dòng),當(dāng)點(diǎn)P移動(dòng)到點(diǎn)A時(shí),P,Q兩點(diǎn)同時(shí)停止,且過(guò)P作GP⊥AE,交DE于點(diǎn)G,設(shè)移動(dòng)的開(kāi)始后為t秒.
①若S=PQ2(厘米),試寫(xiě)出S與t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍?
②當(dāng)S取最小時(shí),在拋物線上是否存在點(diǎn)R,使得以P,A,Q,R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,AB是直經(jīng),D是的中點(diǎn),DE⊥AC交AC的延長(zhǎng)線于E,⊙O的切線BF交AD的延長(zhǎng)線于點(diǎn)F.
(1)求證:DE是⊙O的切線.
(2)試探究AE,AD,AB三者之間的等量關(guān)系.
(3)若DE=3,⊙O的半徑為5,求BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com