【題目】新高考方案規(guī)定,普通高中學(xué)業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計入高考總成績,即“選擇考”成績根據(jù)學(xué)生考試時的原始卷面分?jǐn)?shù),由高到低進行排序,評定為、、、、五個等級.某試點高中2018年參加“選擇考”總?cè)藬?shù)是2016年參加“選擇考”總?cè)藬?shù)的2倍,為了更好地分析該校學(xué)生“選擇考”的水平情況,統(tǒng)計了該校2016年和2018年“選擇考”成績等級結(jié)果,得到如下圖表:

針對該校“選擇考”情況,2018年與2016年比較,下列說法正確的是( )

A. 獲得A等級的人數(shù)減少了B. 獲得B等級的人數(shù)增加了1.5倍

C. 獲得D等級的人數(shù)減少了一半D. 獲得E等級的人數(shù)相同

【答案】B

【解析】

設(shè)出兩年參加考試的人數(shù),然后根據(jù)圖表計算兩年等級為A,B,C,D,E的人數(shù),由此判斷出正確選項.

設(shè)年參加考試人,則年參加考試人,根據(jù)圖表得出兩年各個等級的人數(shù)如下圖所示:

年份

A

B

C

D

E

2016

2018

由圖可知A,C,D選項錯誤,B選項正確,故本小題選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,,,AC4DAC上且ADDC31,當(dāng)∠AED最大時,AED的面積為(

A.B.2C.3D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,已知ABAC,AB2AC4,AA13DBC的中點.

(1) 求直線DC1與平面A1B1D所成角的正弦值;

(2) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項,且,.

1)證明:是等比數(shù)列;

2)若,中是否存在連續(xù)三項成等差數(shù)列?若存在,寫出這三項,若不存在,請說明理由;

3)若是遞減數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8.

有時可用函數(shù)

描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).

1) 證明:當(dāng)時,掌握程度的增加量總是下降;

2) 根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,

.當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2分別是雙曲線1a0b0)的左、右焦點,若雙曲線的右支上存在一點P,使得(0O為坐標(biāo)原點),且|PF1||PF2|,則雙曲線的離心率的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秉承提升學(xué)生核心素養(yǎng)的理念,學(xué)校開設(shè)以提升學(xué)生跨文化素養(yǎng)為核心的多元文化融合課程.選某藝術(shù)課程的學(xué)生唱歌、跳舞至少會一項,已知會唱歌的有人,會跳舞的有人,現(xiàn)從中選人,設(shè)為選出的人中既會唱歌又會跳舞的人數(shù),且

(1)求選該藝術(shù)課程的學(xué)生人數(shù);

(2)寫出的概率分布列并計算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)在三棱錐中,底面,,且三棱錐的每個頂點都在球的表面上,則球的表面積為 _______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十一屆全國少數(shù)民族傳統(tǒng)體育運動會在河南鄭州舉行,某項目比賽期間需要安排3名志愿者完成5項工作,每人至少完成一項,每項工作由一人完成,則不同的安排方式共有多少種

A.60B.90C.120D.150

查看答案和解析>>

同步練習(xí)冊答案