【題目】已知數列的首項,且,.
(1)證明:是等比數列;
(2)若,中是否存在連續(xù)三項成等差數列?若存在,寫出這三項,若不存在,請說明理由;
(3)若是遞減數列,求的取值范圍.
科目:高中數學 來源: 題型:
【題目】某商店銷售某海鮮,統(tǒng)計了春節(jié)前后50天該海鮮的需求量(,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價處理,每處理1公斤虧損10元;若供不應求,可從其它商店調撥,銷售1公斤可獲利30元.假設商店每天該海鮮的進貨量為14公斤,商店的日利潤為元.
(1)求商店日利潤關于需求量的函數表達式;
(2)假設同組中的每個數據用該組區(qū)間的中點值代替.
①求這50天商店銷售該海鮮日利潤的平均數;
②估計日利潤在區(qū)間內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若命題甲是命題乙的充分非必要條件,命題丙是命題乙的必要非充分條件,命題丁是命題丙的充要條件,則命題丁是命題甲的( )
A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求函數的極值;
(2)若恒成立,求的取值范圍;
(3)設函數的極值點為,當變化時,點(,)構成曲線M.證明:任意過原點的直線,與曲線M均僅有一個公共點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義在R上的偶函數,對任意都有,當,且時,,給出如下命題:
①;
②直線是函數的圖象的一條對稱軸;
③函數在上為增函數;
④函數在上有四個零點.
其中所有正確命題的序號為( )
A. ①② B. ②④ C. ①②③ D. ①②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新高考方案規(guī)定,普通高中學業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計入高考總成績,即“選擇考”成績根據學生考試時的原始卷面分數,由高到低進行排序,評定為、、、、五個等級.某試點高中2018年參加“選擇考”總人數是2016年參加“選擇考”總人數的2倍,為了更好地分析該校學生“選擇考”的水平情況,統(tǒng)計了該校2016年和2018年“選擇考”成績等級結果,得到如下圖表:
針對該!斑x擇考”情況,2018年與2016年比較,下列說法正確的是( )
A. 獲得A等級的人數減少了B. 獲得B等級的人數增加了1.5倍
C. 獲得D等級的人數減少了一半D. 獲得E等級的人數相同
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】瑞士著名數學家歐拉在研究幾何時曾定義歐拉三角形,的三個歐拉點(頂點與垂心連線的中點)構成的三角形稱為的歐拉三角形.如圖,是的歐拉三角形(H為的垂心).已知,,,若在內部隨機選取一點,則此點取自陰影部分的概率為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com