【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個動點,且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為( )
A. B. C. D.
【答案】C
【解析】
根據(jù)題意畫出圖形,結合圖形找出△ABC的外接圓圓心與三棱錐P﹣ABC外接球的球心,
求出外接球的半徑,再計算它的表面積.
三棱錐P﹣ABC中,PA⊥平面ABC,直線PQ與平面ABC所成角為θ,
如圖所示;則sinθ==,且sinθ的最大值是,
∴(PQ)min=2,∴AQ的最小值是,即A到BC的距離為,
∴AQ⊥BC,∵AB=2,在Rt△ABQ中可得,即可得BC=6;
取△ABC的外接圓圓心為O′,作OO′∥PA,
∴=2r,解得r=2;
∴O′A=2,
取H為PA的中點,∴OH=O′A=2,PH=,
由勾股定理得OP=R==,
∴三棱錐P﹣ABC的外接球的表面積是
S=4πR2=4×=57π.
故答案為:C
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別是,,,是其左右頂點,點是橢圓上任一點,且的周長為6,若面積的最大值為.
(1)求橢圓的方程;
(2)若過點且斜率不為0的直線交橢圓于,兩個不同點,證明:直線與的交點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若,求曲線在處切線的斜率;
(2)求的單調(diào)區(qū)間;
(3)設,若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,直線將矩形紙分為兩個直角梯形和,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是
圖1 圖2
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.在翻折的過程中,平面恒成立
D.在翻折的過程中,平面恒成立
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),().
(1)若曲線在點處的切線方程為,求實數(shù)am的值;
(2)關于x的方程能否有三個不同的實根?證明你的結論;
(3)若對任意恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點E、F分別是棱PC、PD的中點,則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結論正確的是________.(寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若無窮數(shù)列滿足:,且對任意,(s,k,l,)都有,則稱數(shù)列為“T”數(shù)列.
(1)證明:正項無窮等差數(shù)列是“T”數(shù)列;
(2)記正項等比數(shù)列的前n項之和為,若數(shù)列是“T”數(shù)列,求數(shù)列公比的取值范圍;
(3)若數(shù)列是“T”數(shù)列,且數(shù)列的前n項之和滿足,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.
(1)設方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;
(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結果四舍五入保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.
(1)求曲線的方程;
(2)若點為曲線上的兩個動點,記,判斷是否存在常數(shù)使得點到直線的距離為定值?若存在,求出常數(shù)的值和這個定值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com