【題目】已知F1F2是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且|PF1||PF2|,線段PF1的垂直平分線經(jīng)過點F2,若橢圓的離心率為e1,雙曲線的離心率為e2,則的最小值為(

A.2B.2C.6D.6

【答案】B

【解析】

,不妨設點在第二象限,橢圓和曲線的焦點在軸上,且它們的長半軸為,實半軸為,半焦距為,運用橢圓和雙曲線的定義,以及垂直平分線的性質(zhì),結(jié)合離心率和基本不等式,即可求解.

,不妨設點在第二象限,

橢圓和曲線的焦點在軸上,且它們的長半軸為,實半軸為,半焦距為,

由橢圓和雙曲線的定義可得

由線段的垂直平分線過點,可得

又由點在第二象限,所以,即,所以,

, 即,

又由橢圓和雙曲線的離心率,可得,

當且僅當,即時,上式取得最小值.

故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面ABC,是邊長為2的正三角形,,EF分別為BC,的中點.

1求證:平面平面

2求三棱錐的體積;

3在線段上是否存在一點M,使直線MF與平面沒有公共點?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線平面,直線平行四邊形,四棱錐的頂點在平面上,,,,分別是的中點.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,ABCD,ADDCCB1,∠BCD120°,四邊形BFED為矩形,平面BFED⊥平面ABCDBF1.

(1)求證:AD⊥平面BFED;

(2)P在線段EF上運動,設平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓,點是圓內(nèi)一個定點,是圓上任意-一點,線段的垂直平分線和半徑相交于點,連接,記動點的軌跡為曲線.

(1)求曲線的方程;

(2)、是曲線上關(guān)于原點對稱的兩個點,點是曲線.上任意-一點(不同于點、),當直線的斜率都存在時,記它們的斜率分別為、,求證:的為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以為極點,軸為正半軸為極軸建立極坐標系.已知曲線的極坐標方程為 ,直線與曲線相交于兩點,直線過定點且傾斜角為交曲線兩點.

(1)把曲線化成直角坐標方程,并求的值;

(2)若成等比數(shù)列,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長,“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,,,兩條平行線間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,為橢圓上不與左右頂點重合的任意一點,,分別為的內(nèi)心、重心,當軸時,橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】7本不同的書:

1)全部分給6個人,每人至少一本,有多少種不同的分法?

2)全部分給5個人,每人至少一本,有多少種不同的分法?.

查看答案和解析>>

同步練習冊答案