已知橢圓的離心率為,

軸被拋物線截得的線段長等于的長半軸長.
(1)求的方程;
(2)設(shè)軸的交點為,過坐標原點的直線
相交于兩點,直線分別與相交于.   
①證明:為定值;
②記的面積為,試把表示成的函數(shù),并求的最大值.

(1)
(2)利用直線與拋物線以及直線于橢圓聯(lián)立方程組來求解向量的坐標,利用數(shù)量積為零來證明垂直。當,即時,

解析試題分析:解:(1)由已知,      ①           
中,令,得
由①②得,
                           
(2)由
設(shè),則             

  
 
(3)設(shè)上,
,直線方程為:代入, 得,
,同理

由(2)知,
,
時,為增函數(shù),
,即時,
考點:直線與拋物線,橢圓的位置關(guān)系
點評:解決的關(guān)鍵是利用拋物線的性質(zhì)和橢圓的性質(zhì)得到方程的求解,以及聯(lián)立方程組來得到坐標,結(jié)合向量的數(shù)量積為零證明垂直,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

極坐標系與直角坐標系有相同的長度單位,以原點為極點,以正半軸為極軸,已知曲線的極坐標方程為,曲線的參數(shù)方程是為參數(shù),,射線與曲線交于極點外的三點
(Ⅰ)求證:
(Ⅱ)當時,兩點在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的兩個焦點為F1、F2,點P在橢圓C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點,且A、B關(guān)于點M對稱,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得|=3|.
(1)求橢圓的標準方程;         
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

動圓過定點,且與直線相切,其中.設(shè)圓心的軌跡的程為
(1)求;
(2)曲線上的一定點(0) ,方向向量的直線(不過P點)與曲線交與A、B兩點,設(shè)直線PA、PB斜率分別為,計算;
(3)曲線上的兩個定點、,分別過點作傾斜角互補的兩條直線分別與曲線交于兩點,求證直線的斜率為定值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓的右焦點與拋物線的焦點重合,過作與軸垂直的直線與橢圓交于,而與拋物線交于兩點,且.

(Ⅰ)求橢圓的方程;
(Ⅱ)若過的直線與橢圓相交于兩點,
設(shè)為橢圓上一點,且滿足為坐標原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 (α為參數(shù)).
(1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè),在平面直角坐標系中,已知向量,向量,,動點的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且(O為坐標原點),并求出該圓的方程;
(3)已知,設(shè)直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,且過點.
(1)求該橢圓的標準方程;
(2)設(shè)點,若是橢圓上的動點,求線段的中點的軌跡方程.

查看答案和解析>>

同步練習冊答案