如圖,橢圓的右焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,過(guò)作與軸垂直的直線(xiàn)與橢圓交于,而與拋物線(xiàn)交于兩點(diǎn),且.

(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)的直線(xiàn)與橢圓相交于兩點(diǎn),
設(shè)為橢圓上一點(diǎn),且滿(mǎn)足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

(1);⑵.

解析試題分析:(1)焦點(diǎn),,

 
 即
設(shè)
 得 
 即

 .
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),拋物線(xiàn)與橢圓、直線(xiàn)與橢圓的位置關(guān)系。
點(diǎn)評(píng):中檔題,本題求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用的橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。研究直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系,往往應(yīng)用韋達(dá)定理,通過(guò)“整體代換”,簡(jiǎn)化解題過(guò)程,實(shí)現(xiàn)解題目的。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),)的圖象恒過(guò)定點(diǎn),橢圓
)的左,右焦點(diǎn)分別為,,直線(xiàn)經(jīng)過(guò)點(diǎn)且與⊙相切.
(1)求直線(xiàn)的方程;
(2)若直線(xiàn)經(jīng)過(guò)點(diǎn)并與橢圓軸上方的交點(diǎn)為,且,求內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

平面直角坐標(biāo)系和極坐標(biāo)系的原點(diǎn)與極點(diǎn)重合,軸的正半軸與極軸重合,單位長(zhǎng)度相同。已知曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為,射線(xiàn),與曲線(xiàn)交于極點(diǎn)以外的三點(diǎn)A,B,C.
(1)求證:;
(2)當(dāng)時(shí),B,C兩點(diǎn)在曲線(xiàn)上,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F、F,A是橢圓C上的一點(diǎn),AF⊥FF,O是坐標(biāo)原點(diǎn),OB垂直AF于B,且OF=3OB.

(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x+y=t上任意點(diǎn)M(x,y)處的切線(xiàn)交橢圓C于Q、Q兩點(diǎn),那么OQ⊥OQ”成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為

軸被拋物線(xiàn)截得的線(xiàn)段長(zhǎng)等于的長(zhǎng)半軸長(zhǎng).
(1)求的方程;
(2)設(shè)軸的交點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)
相交于兩點(diǎn),直線(xiàn)分別與相交于.   
①證明:為定值;
②記的面積為,試把表示成的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線(xiàn),點(diǎn)、分別為雙曲線(xiàn)的左、右焦點(diǎn),動(dòng)點(diǎn)軸上方.
(1)若點(diǎn)的坐標(biāo)為是雙曲線(xiàn)的一條漸近線(xiàn)上的點(diǎn),求以為焦點(diǎn)且經(jīng)過(guò)點(diǎn)的橢圓的方程;
(2)若∠,求△的外接圓的方程;
(3)若在給定直線(xiàn)上任取一點(diǎn),從點(diǎn)向(2)中圓引一條切線(xiàn),切點(diǎn)為. 問(wèn)是否存在一個(gè)定點(diǎn),恒有?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),拋物線(xiàn)在點(diǎn)處的切線(xiàn)分別為,且交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿(mǎn)足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的方程為左、右焦點(diǎn)分別為F1、F2,焦距為4,點(diǎn)M是橢圓C上一點(diǎn),滿(mǎn)足
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)P(0,2)分別作直線(xiàn)PA,PB交橢圓C于A,B兩點(diǎn),設(shè)直線(xiàn)PA,PB的斜率分別為k1,k2,,求證:直線(xiàn)AB過(guò)定點(diǎn),并求出直線(xiàn)AB的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓O,直線(xiàn)l與橢圓C相交于P、Q兩點(diǎn),O為原點(diǎn).
(Ⅰ)若直線(xiàn)l過(guò)橢圓C的左焦點(diǎn),且與圓O交于A、B兩點(diǎn),且,求直線(xiàn)l的方程;
(Ⅱ)如圖,若重心恰好在圓上,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案