【題目】在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側棱AA1⊥平面ABC,且D,E分別是棱A1B1,AA1的中點,點F在棱AB上,且AF=AB。
(1)求證:EF∥平面BDC1;
(2)求三棱錐D-BEC1的體積。
【答案】(1)見解析(2)
【解析】試題分析:
(1)由題意結合幾何關系可證得EF∥BD,然后利用線面平行的判定定理即可證得EF∥平面DBC1;
(2)利用題中幾何體的特點轉(zhuǎn)化頂點可求得三棱錐的體積為.
試題解析:
(1)設O為AB的中點,連接A1O,∵AF= ,O為AB的中點,∴F為AO的中點,
又∵E為AA1的中點,∴EF∥A1O,又∵D為A1B1的中點,O為AB的中點,∴A1D=OB,
又∵A1D∥OB,所以四面形A1DBO為平行四邊形,∴A1O∥BD,又∵EF∥A1O,∴EF∥BD,又∵EF平面DBC1,BD平面DBC1,∴EF∥平面DBC1;
∵AB=BC-CA=AA1=2
D,E分別為A1B1,AA1的中點,AF=AB,∴C1D⊥面ABB1A1,而
S△BDE==2x2-x2x1-x2x1-x1x1=。
∵C1D=,∴=S△BDE·C1D=
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù), .(的圖象連續(xù)不斷)
(1) 求的單調(diào)區(qū)間;
(2) 當時,證明:存在,使;
(3) 若存在屬于區(qū)間的,且,使,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設有一個容積V一定的鋁合金蓋的圓柱形鐵桶,已知單位面積鋁合金的價格是鐵的3倍,當總造價最少時,桶高為( )
A.
B.
C.2
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在實數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導數(shù)f'(x)在R上恒有f'(x)<1(x∈R),則不等式f(x)>x+1的解集為( )
A.(1,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓=1(a>b>0)的左右焦點分別為F1(-c,0)、F2(c,0),過橢圓中心的弦PQ滿足丨PQ丨=2,∠PF2Q=90°,且△PF2Q的面積為1.
(1)求橢圓的方程;
(2)直線l不經(jīng)過點A(0,1),且與橢圓交于M,N兩點,若以MN為直徑的圓經(jīng)過點A,求證:直線l過定點,并求出該定點的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,a為正常數(shù).
(1)若f(x)=lnx+φ(x),且a= ,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在(1)中當a=0時,函數(shù)y=f(x)的圖象上任意不同的兩點A(x1 , y1),B(x2 , y2),線段AB的中點為C(x0 , y0),記直線AB的斜率為k,試證明:k>f'(x0).
(3)若g(x)=|lnx|+φ(x),且對任意的x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如圖所示:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | 24 |
(Ⅰ)求, , 的值;
(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談.現(xiàn)再從這10人這任選4人,記所選4人的量化總分為,求的分布列及數(shù)學期望;
(Ⅲ)某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效.若,則認定教育活動是有效的;否則認定教育活動無效,應調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調(diào)整安全教育方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com