【題目】某校為了解校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應(yīng)等級進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對應(yīng)的頻率分布直方圖如圖所示:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | 24 |
(Ⅰ)求, , 的值;
(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談.現(xiàn)再從這10人這任選4人,記所選4人的量化總分為,求的分布列及數(shù)學(xué)期望;
(Ⅲ)某評估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來評估該校安全教育活動的成效.若,則認(rèn)定教育活動是有效的;否則認(rèn)定教育活動無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?
【答案】(1), ;(2)(3)見解析.
【解析】試題分析:(1)利用頻率分布直方圖的性質(zhì)即可得出;(2)從評定等級為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談,其中“不合格”的學(xué)生 ,則“合格”的學(xué)生數(shù)=6.由題意可得ξ=0,5,10,15,20.利用“超幾何分布列”的計(jì)算公式即可得出概率,進(jìn)而得出分布列與數(shù)學(xué)期望;(3)利用Dξ計(jì)算公式即可得出,可得,即可得出結(jié)論.
試題解析:(1)由頻率分布直方圖可知,得分在的頻率為,
故抽取的學(xué)生答卷數(shù)為: ,
又由頻率分布直方圖可知,得分在的頻率為0.2,
所以,
又,得,
所以.
.
(2)“不合格”與“合格”的人數(shù)比例為24:36=2:3,
因此抽取的10人中“不合格”有4人,“合格”有6人.
所以有20,15,10,5,0共5種可能的取值.
的分布列為:
, .
的分布列為:
20 | 15 | 10 | 5 | 0 | |
所以.
(3)由(2)可得
,
所以,
故我們認(rèn)為該校的安全教育活動是有效的,不需要調(diào)整安全教育方案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥平面ABC,且D,E分別是棱A1B1,AA1的中點(diǎn),點(diǎn)F在棱AB上,且AF=AB。
(1)求證:EF∥平面BDC1;
(2)求三棱錐D-BEC1的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosωx·sin(ωx+)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間[0,]上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(0)=1,則不等式f(x)<ex的解集為( )
A.(﹣∞,e4)
B.(e4 , +∞)
C.(﹣∞,0)
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2lnx.
(1)求證:f(x)在(1,+∞)上單調(diào)遞增.
(2)若f(x)≥2tx﹣ 在x∈(0,1]內(nèi)恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組抽出的號碼為28,則第8組抽出的號碼應(yīng)是a;若用分層抽樣方法,則50歲以下年齡段應(yīng)抽取b人,那么a+b等于( )
A.46
B.45
C.70
D.69
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)= ,有下列5個結(jié)論: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點(diǎn);
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個不同實(shí)根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號是 . (請寫出全部正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對任意的x∈R都有3f′(x)>f(x)成立,則( )
A.3f(3ln2)>2f(3ln3)
B.3f(3ln2)與2f(3ln3)的大小不確定
C.3f(3ln2)=2f(3ln3)
D.3f(3ln2)<2f(3ln3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,內(nèi)角A,B,C的對邊分別是a,b,c,且a2+b2+ab=c2.
(1)求C;
(2)設(shè)cos Acos B=,,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com