【題目】人的正常體溫在之間,下圖是一位病人在治療期間的體溫變化圖.

現(xiàn)有下述四個結(jié)論:

此病人已明顯好轉(zhuǎn);

治療期間的體溫極差小于;

從每8小時的變化來看,250~8時體溫最穩(wěn)定;

3228時開始,每8小時量一次體溫,若體溫不低于就服用退燒藥,根據(jù)圖中信息可知該病人服用了3次退燒藥.

其中所有正確結(jié)論的編號是(

A.③④B.②③C.①②④D.①②③

【答案】D

【解析】

根據(jù)折線圖,分析圖中的數(shù)據(jù)逐一判斷即可.

從治療過程看,此病人已明顯好轉(zhuǎn),正確;

治療期間體溫最高為,最低略高于,極差小于,正確;

從每8小時的變化來看,250時~8時最穩(wěn)定,正確;

2次不低于,可知服用2次退燒藥,錯誤.

故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2002名運動員,號碼依次為.從中選出若干名運動員參加儀仗隊,但要使剩下的運動員中沒有一個人的號碼數(shù)等于另外兩人的號碼數(shù)的乘積.那么,被選為儀仗隊的運動員至少能有多少人?給出你的選取方案,并簡述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個十進制正整數(shù)中,如果它含有偶數(shù)(包括零)個數(shù)字 8 ,則稱它為“優(yōu)數(shù)” ,否則就稱它為“非優(yōu)數(shù)” .那么,長度(位數(shù))不超過是正整數(shù))的所有“優(yōu)數(shù)” 的個數(shù)是 __________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù)項為的函數(shù)的導(dǎo)函數(shù)為,其中為常數(shù).

(1)當時,求的最大值;

(2)若在區(qū)間為自然對數(shù)的底數(shù))上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:

(2)預(yù)計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應(yīng)定為多少元?

附:,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,已知點,曲線的參數(shù)方程為為參數(shù)),點是曲線上的任意一點,點的中點,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

1)求點的軌跡的極坐標方程;

2)已知直線與曲線交于點,射線逆時針旋轉(zhuǎn)交曲線于點,且,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬元時的收益為萬元,投資股票等風險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬元時的收益為0.5萬元,

1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機抽取某校高一100名學(xué)生的期末考試英語成績(他們的英語成績都在80分140分之間),將他們的英語成績(單位:分)分成:,,,,六組,得到如圖所示的部分頻率分布直方圖,已知成績處于內(nèi)與內(nèi)的頻數(shù)之和等于成績處于內(nèi)的頻數(shù),根據(jù)圖中的信息,回答下列問題:

(1)求頻率分布直方圖中未畫出的小矩形的面積之和;

(2)求成績處于內(nèi)與內(nèi)的頻率之差;

(3)用分層抽樣的方法從成績不低于120分的學(xué)生中選取一個容量為6的樣本,將該樣本看成一個總體,從中任選2人,求這2人中恰有一人成績低于130分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行六面體ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,點M、F分別是線段AA1、BC的中點.

(1)求證:AF⊥DD1;

(2)求證:AF∥平面MBC1

查看答案和解析>>

同步練習冊答案