【題目】已知函數(shù)

)若在曲線上的一點(diǎn)的切線方程為軸,求此時(shí)的值;

)若恒成立,求的取值范圍.

【答案】;(.

【解析】

)設(shè)切點(diǎn)的坐標(biāo)為,根據(jù)題意得出,可求得實(shí)數(shù)的值;

)構(gòu)造函數(shù),求得,然后分、三種情況討論,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,根據(jù)題意得出,可得出所滿足的不等關(guān)系,通過構(gòu)造函數(shù),利用導(dǎo)數(shù)可求的取值范圍.

)設(shè)切點(diǎn)的坐標(biāo)為,,

由題意可得,解得,因此,;

)設(shè),則,

①當(dāng)時(shí),,

當(dāng)時(shí),;當(dāng)時(shí),.

所以上單調(diào)遞減,在上單調(diào)遞增,

所以,令,所以;

②當(dāng)時(shí),易知有兩個(gè)根、,且有

不妨令,又,所以,,由題意舍去,

所以當(dāng)時(shí),;當(dāng)時(shí),

所以上單調(diào)遞減,在上單調(diào)遞增,

所以

,所以,

,所以,得,

,則,

,解得(舍),

所以上單調(diào)遞增,在上單調(diào)遞減,

,所以;

③當(dāng)時(shí),若,取,則,

所以,不符合題意.

綜上所述,的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年春季,某出租汽車公同決定更換一批新的小汽車以代替原來報(bào)廢的出租車,現(xiàn)有AB兩款車型,根據(jù)以這往這兩種租車車型的數(shù)據(jù),得到兩款出租車型使用壽命頻數(shù)表如表:

1)填寫下表,并判斷是否有99%的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān)?

2)司機(jī)師傅小李準(zhǔn)備在一輛開了4年的A型車和一輛開了4年的B型車中選擇,為了盡最大可能實(shí)現(xiàn)3年內(nèi)(含3年)不換車,試通過計(jì)算說明,他應(yīng)如何選擇.

參考公式:,其中na+b+c+d.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐SABCD中,SDCDSC2AB2BC,平面ABCD⊥底面SDCABCD,∠ABC90°,ESD中點(diǎn).

1)證明:直線AE//平面SBC

2)點(diǎn)F為線段AS的中點(diǎn),求二面角FCDS的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,定義:以橢圓中心為圓心,長軸為直徑的圓叫做橢圓的輔助圓”.過橢圓第四象限內(nèi)一點(diǎn)Mx軸的垂線交其輔助圓于點(diǎn)N,當(dāng)點(diǎn)N在點(diǎn)M的下方時(shí),稱點(diǎn)N為點(diǎn)M下輔助點(diǎn)”.已知橢圓E上的點(diǎn)的下輔助點(diǎn)為(1,﹣1.

1)求橢圓E的方程;

2)若△OMN的面積等于,求下輔助點(diǎn)N的坐標(biāo);

3)已知直線lxmyt0與橢圓E交于不同的AB兩點(diǎn),若橢圓E上存在點(diǎn)P,滿足,求直線l與坐標(biāo)軸圍成的三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1,23,45,6這六個(gè)數(shù)字所組成的允許有重復(fù)數(shù)字的三位數(shù)中,各個(gè)數(shù)位上的數(shù)字之和為9的三位數(shù)共有(

A.16個(gè)B.18個(gè)C.24個(gè)D.25個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是_________;若存在實(shí)數(shù),使函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與橢圓有一個(gè)相同的焦點(diǎn),過點(diǎn)且與軸不垂直的直線與拋物線交于兩點(diǎn),關(guān)于軸的對(duì)稱點(diǎn)為.

(1)求拋物線的方程;

(2)試問直線是否過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C(ab0)經(jīng)過點(diǎn)(2,0),橢圓C上三點(diǎn)A,M,B與原點(diǎn)O構(gòu)成一個(gè)平行四邊形AMBO.

1)求橢圓C的方程;

2)若點(diǎn)B是橢圓C左頂點(diǎn),求點(diǎn)M的坐標(biāo);

3)若A,M,B,O四點(diǎn)共圓,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何是一門以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué),科赫曲線是比較典型的分形圖形,1904年瑞典數(shù)學(xué)家科赫第一次描述了這種曲線,因此將這種曲線稱為科赫曲線.其生成方法是:(I)將正三角形(圖(1))的每邊三等分,以每邊三等分后的中間的那一條線段為一邊,向形外作等邊三角形,并將這“中間一段”去掉,得到圖(2);(II)將圖(2)的每邊三等分,重復(fù)上述的作圖方法,得到圖(3);(Ⅲ)再按上述方法繼續(xù)做下去……,設(shè)圖(1)中的等邊三角形的邊長為1,并且分別將圖(1)、圖(2)、圖(3)、…、圖(n)、…中的圖形依次記作,,,…,,…,設(shè)的周長為,則為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案