【題目】分形幾何是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學,科赫曲線是比較典型的分形圖形,1904年瑞典數(shù)學家科赫第一次描述了這種曲線,因此將這種曲線稱為科赫曲線.其生成方法是:(I)將正三角形(圖(1))的每邊三等分,以每邊三等分后的中間的那一條線段為一邊,向形外作等邊三角形,并將這“中間一段”去掉,得到圖(2);(II)將圖(2)的每邊三等分,重復上述的作圖方法,得到圖(3);(Ⅲ)再按上述方法繼續(xù)做下去……,設圖(1)中的等邊三角形的邊長為1,并且分別將圖(1)、圖(2)、圖(3)、…、圖(n)、…中的圖形依次記作,,…,,…,設的周長為,則為( )

A.B.C.D.

【答案】C

【解析】

由題意可知,每個三角形的都是正三角形,且邊長變?yōu)樵瓉砣切蔚?/span>,從而邊長的遞推公式為,故可求出的周長為

解:由題意可知,每個三角形的都是正三角形,且邊長變?yōu)樵瓉砣切蔚?/span>,從而邊長的遞推公式為,

所以

所以

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)若在曲線上的一點的切線方程為軸,求此時的值;

)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某高校全校學生的閱讀情況,隨機調(diào)查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.

1)求這200名學生每周閱讀時間的樣本平均數(shù)和中位數(shù)的值精確到0.01);

2)為查找影響學生閱讀時間的因素,學校團委決定從每周閱讀時間為,的學生中抽取9名參加座談會.你認為9個名額應該怎么分配?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且x0fx)的極值點.

1)求fx)的最小值;

2)是否存在實數(shù)b,使得關于x的不等式exbx+fx)在(0+∞)上恒成立?若存在,求出b的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且以原點為圓心,以短軸長為直徑的圓過點.

1)求橢圓的標準方程;

2)若過點的直線與橢圓交于不同的兩點,且與圓沒有公共點,設為橢圓上一點,滿足為坐標原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)證明處的切線恒過定點;

2)若有兩個極值點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】居民消費價格指數(shù),簡稱CPI,是一個反映居民家庭一般所購買的消費品和服務項目價格水平變動情況的宏觀經(jīng)濟指標.一般來說,CPI的高低直接影響著國家的宏觀經(jīng)濟調(diào)控措施的出臺與力度,下圖是國家統(tǒng)計局發(fā)布的我國2009年至2018年這十年居民消費價格指數(shù)的折線圖.

則下列對該折線圖分析正確的是(

A.這十年的居民消費價格指數(shù)的中位數(shù)為2013年的居民消費價格指數(shù)

B.這十年的居民消費價格指數(shù)的眾數(shù)為2015年的居民消費價格指數(shù)

C.2009年~2012年這4年居民消費價格指數(shù)的方差小于2015年~2018年這4年居民消費價格指數(shù)的方差

D.2011年~2013年這3年居民消費價格指數(shù)的平均值大于2016年~2018年這3年居民消費價格指數(shù)的平均值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】七巧板是中國古代勞動人民的發(fā)明,其歷史至少可以追溯到公元前一世紀,后清陸以湉《冷廬雜識》卷一中寫道近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余18世紀,七巧板流傳到了國外,被譽為東方魔板,至今英國劍橋大學的圖書館里還珍藏著一部《七巧新譜》.完整圖案為一正方形(如圖):五塊等腰直角三角形、一塊正方形和一塊平行四邊形,如果在此正方形中隨機取一點,那么此點取自陰影部分的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在公比大于0的等比數(shù)列{an}中,已知a3a5a4,且a2,3a4,a3成等差數(shù)列.

1)求{an}的通項公式;

2)已知Sna1a2an,試問當n為何值時,Sn取得最大值,并求Sn的最大值.

查看答案和解析>>

同步練習冊答案