【題目】某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

【答案】
(1)解:樣本均值為
(2)解:抽取的6名工人中有2名為優(yōu)秀工人,所以12名工人中有4名優(yōu)秀工人
(3)解:設(shè)“從該車間12名工人中,任取2人,恰有1名優(yōu)秀工人”為事件A,

所以 ,

即恰有1名優(yōu)秀工人的概率為


【解析】(1)莖葉圖中共同的數(shù)字是數(shù)字的十位,這是解決本題的突破口,根據(jù)所給的莖葉圖數(shù)據(jù),代入平均數(shù)公式求出結(jié)果;(2)先由(1)求得的平均數(shù),再利用比例關(guān)系即可推斷該車間12名工人中有幾名優(yōu)秀工人的人數(shù);(3)設(shè)“從該車間12名工人中,任取2人,恰有1名優(yōu)秀工人”為事件A,結(jié)合組合數(shù)利用概率的計(jì)算公式即可求解事件A的概率.
【考點(diǎn)精析】本題主要考查了莖葉圖和平均數(shù)、中位數(shù)、眾數(shù)的相關(guān)知識點(diǎn),需要掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少;⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=(﹣1)nan ,n∈N* , 則
①a3=;
②S1+S2+…+S100=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為 為參數(shù),a>b>0).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l與圓O的極坐標(biāo)方程分別為 為非零常數(shù))與ρ=b.若直線l經(jīng)過橢圓C的焦點(diǎn),且與圓O相切,則橢圓C的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.

I求張同學(xué)至少取到1道乙類題的概率;

II已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨(dú)立.用表示張同學(xué)答對題的個數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定區(qū)域D: .令點(diǎn)集T={(x0 , y0)∈D|x0 , y0∈Z,(x0 , y0)是z=x+y在D上取得最大值或最小值的點(diǎn)},則T中的點(diǎn)共確定條不同的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)當(dāng)k=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng) 時,求函數(shù)f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電影院共有個座位.某天,這家電影院上、下午各演一場電影.看電影的是甲、乙、丙三所中學(xué)的學(xué)生,三所學(xué)校的觀影人數(shù)分別是985人, 1010人,2019人(同一所學(xué)校的學(xué)生有的看上午場,也有的看下午場,但每人只能看一-場).已知無論如何排座位,這天觀影時總存在這樣的一個座位,上、 下午在這個座位上坐的是同一所學(xué)校的學(xué)生,那么的可能取值有( )

A. 12個 B. 11個 C. 10個 D. 前三個答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列五個正方體圖形中,是正方體的一條對角線,點(diǎn)M,N,P分別為其所在棱的中點(diǎn),求能得出MNP的圖形的序號(寫出所有符合要求的圖形序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司針對企業(yè)職工推出一款意外險(xiǎn)產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬元.保險(xiǎn)公司把職工從事的所有崗位共分為、、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的每賠付頻率如下表(并以此估計(jì)賠付概率).

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費(fèi)的20%,試分別確定各類工種每張保單保費(fèi)的上限;

(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險(xiǎn),并以(Ⅰ)中計(jì)算的各類保險(xiǎn)上限購買,試估計(jì)保險(xiǎn)公司在這宗交易中的期望利潤.

查看答案和解析>>

同步練習(xí)冊答案