【題目】已知函數(shù)f(x)=Asin(ωx﹣ )+1(A>0,ω>0)的最大值為3,其圖象的相鄰兩條對稱軸之間的距離為
(1)求函數(shù)f(x)對稱中心的坐標;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的值域.

【答案】
(1)解:因為A>0,所以f(x)max=A+1=3,

所以A=2,

又因為f(x)圖象的相鄰兩條對稱軸之間的距離為 ,

所以 = ,

所以T=π,

故ω= =2,

所以f(x)=2sin(2x﹣ )+1.

令2x﹣ =kπ(k∈Z),

所以x= + (k∈Z),

故對稱中心為( + ,1)(k∈Z);


(2)解:∵x∈[0, ],

∴2x﹣ ∈[﹣ , ],

∴sin(2x﹣ )∈[ ,1],

∴f(x)=2sin(2x﹣ )+1∈[0,3]

所以函數(shù)f(x)在區(qū)間[0, ]上的值域為:[0,3].


【解析】首先根據(jù)函數(shù)的最值和對稱軸之間的距離確定A和ω,進一步求出正弦型函數(shù)的解析式.(1)根據(jù)正弦函數(shù)圖象性質(zhì)求得函數(shù)f(x)對稱中心的坐標;(2)根據(jù)正弦函數(shù)圖象的性質(zhì)求值域.
【考點精析】通過靈活運用正弦函數(shù)的單調(diào)性和正弦函數(shù)的對稱性,掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù);正弦函數(shù)的對稱性:對稱中心;對稱軸即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,(ω>0),其最小正周期為
(1)求f(x)的表達式;
(2)將函數(shù)f(x)的圖象向右平移 個單位,再將圖象上各點的橫坐標伸長到原來的4倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,若關于x的方程g(x)+m=0在區(qū)間 上有且只有一個實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=,gx)=1-ax2

(1)若函數(shù)fx)和gx)的圖象在x=1處的切線平行,求a的值;

(2)當x∈[0,1]時,不等式fx)≤gx)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=2ax﹣ +lnx在x=1與x= 處都取得極值. (Ⅰ) 求a,b的值;
(Ⅱ)設函數(shù)g(x)=x2﹣2mx+m,若對任意的x1∈[ ,2],總存在x2∈[ ,2],使得g(x1)≥f(x2)﹣lnx2 , 求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ) 的最小正周期為π,且f(﹣x)=f(x),則(
A.f(x)在 單調(diào)遞減
B.f(x)在( )單調(diào)遞減
C.f(x)在(0, )單調(diào)遞增
D.f(x)在( )單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)對任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導函數(shù)),則下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f( )??
C.f(0)>2f(
D.f(0)> f(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,斜三棱柱中,側(cè)面與側(cè)面都是菱形, ,

)求證: ;

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學在獨立完成課本上的例題:“求證: + <2 ”后,又進行了探究,發(fā)現(xiàn)下面的不等式均成立. + <2
+ <2
+ <2
+ <2 ,
+ ≤2
(1)請根據(jù)上述不等式歸納出一個一般性的不等式;(用字母表示)
(2)請用合適的方法證明你寫出的不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)當x≤0時,解不等式f(x)≥﹣1;
(2)寫出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個不同零點,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案