【題目】已知向量=(cosθ,sinθ),=(cosβ,sinβ).
(1)若,求的值;
(2)若記f(θ)=,θ∈[0,].當1≤λ≤2時,求f(θ)的最小值.
【答案】(1)1 ; (2)--1.
【解析】
(1)根據(jù)向量的坐標運算和向量的模以及兩角和差即可求出答案;
(2)根據(jù)向量的數(shù)量積和二倍角公式化簡得到f(θ)=2cos2(θ)﹣2λcos(θ)﹣1,令t=cos(θ),根據(jù)二次函數(shù)的性質即可求出.
(1)∵向量=(cosθ,sinθ),=(cosβ,sinβ),
∴-=(cosθ-cosβ,sinθ-sinβ),
∴|-|2=(cosθ-cosβ)2+(sinθ-sinβ)2=2-2cos(θ-β)=2-2cos=2-1=1,
∴|-|=1;
(2)=cosθcosβ+sinθsinβ=cos(θ-β)=cos(2θ-),
∴|+|==2|cos(θ-)|=2cos(θ-),
∴f(θ)=cos(2θ-)-2λcos(θ-)=2cos2(θ-)-2λcos(θ-)-1
令t=cos(θ-),則t∈[,1],
∴f(t)=2t2-2λt-1=2(t-)2--1,
又1≤λ≤2,≤≤1,
∴t=時,f(t)有最小值--1,
∴f(θ)的最小值為--1.
科目:高中數(shù)學 來源: 題型:
【題目】某商品在近天內(nèi)每件的銷售價格(元)與時間(天)的函數(shù)關系是:
,該商品的日銷售量(件)與時間(天)的函數(shù)關系是,求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天?(商品的日銷售金額=該商品的銷售價格日銷售量)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)求點C到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l:y=t(t≠0)交y軸于點M,交拋物線C:y2=2px(p>0)于點P,M關于點P的對稱點為N,連結ON并延長交C于點H.
(1)求 ;
(2)除H以外,直線MH與C是否有其它公共點?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+1|﹣|2x﹣3|.
(1)在圖中畫出y=f(x)的圖象;
(2)求不等式|f(x)|>1的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC與BD交于點O,點E、F分別在AD,CD上,AE=CF,EF交BD于點H,將△DEF沿EF折到△D′EF的位置.
(1)證明:AC⊥HD′;
(2)若AB=5,AC=6,AE= ,OD′=2 ,求五棱錐D′﹣ABCFE體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=a--lnx,g(x)=ex-ex+1.
(1)若a=2,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)若f(x)=0恰有一個解,求a的值;
(3)若g(x)≥f(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sin θ.
(1)把C1的參數(shù)方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com