【題目】已知向量=(cosθ,sinθ),=(cosβ,sinβ).

(1)若,求的值;

(2)若記f(θ)=,θ∈[0,].當1≤λ≤2時,求f(θ)的最小值.

【答案】(1)1 ; (2)--1.

【解析】

(1)根據(jù)向量的坐標運算和向量的模以及兩角和差即可求出答案;

(2)根據(jù)向量的數(shù)量積和二倍角公式化簡得到fθ)=2cos2θ)﹣2λcos(θ)﹣1,令t=cos(θ),根據(jù)二次函數(shù)的性質即可求出.

(1)∵向量=(cosθ,sinθ),=(cosβ,sinβ),

-=(cosθ-cosβ,sinθ-sinβ),

∴|-|2=(cosθ-cosβ)2+(sinθ-sinβ)2=2-2cos(θ-β)=2-2cos=2-1=1,

∴|-|=1;

(2)=cosθcosβ+sinθsinβ=cos(θ-β)=cos(2θ-),

∴|+|==2|cos(θ-)|=2cos(θ-),

∴f(θ)=cos(2θ-)-2λcos(θ-)=2cos2(θ-)-2λcos(θ-)-1

令t=cos(θ-),則t∈[,1],

∴f(t)=2t2-2λt-1=2(t-2--1,

又1≤λ≤2,≤1,

∴t=時,f(t)有最小值--1,

∴f(θ)的最小值為--1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某商品在近天內(nèi)每件的銷售價格(元)與時間(天)的函數(shù)關系是:

,該商品的日銷售量(件)與時間(天)的函數(shù)關系是,求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天?(商品的日銷售金額=該商品的銷售價格日銷售量)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.

(1)求證:AA1⊥平面ABC;

(2)求二面角A1-BC1-B1的余弦值;

(3)求點C到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l:y=t(t≠0)交y軸于點M,交拋物線C:y2=2px(p>0)于點P,M關于點P的對稱點為N,連結ON并延長交C于點H.
(1)求 ;
(2)除H以外,直線MH與C是否有其它公共點?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+1|﹣|2x﹣3|.

(1)在圖中畫出y=f(x)的圖象;
(2)求不等式|f(x)|>1的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC與BD交于點O,點E、F分別在AD,CD上,AE=CF,EF交BD于點H,將△DEF沿EF折到△D′EF的位置.
(1)證明:AC⊥HD′;
(2)若AB=5,AC=6,AE= ,OD′=2 ,求五棱錐D′﹣ABCFE體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=a--lnx,gx=ex-ex+1

1)若a=2,求函數(shù)fx)在點(1,f1))處的切線方程;

2)若fx=0恰有一個解,求a的值;

3)若gx≥fx)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=+lg(3x)的定義域為M.

(Ⅰ)求M;

(Ⅱ)當x∈M時,求g(x)=4x-2x+1+2的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2sin θ.

(1)C1的參數(shù)方程化為極坐標方程;

(2)C1C2交點的極坐標(ρ≥0,0≤θ<2π)

查看答案和解析>>

同步練習冊答案