【題目】某商品在近天內(nèi)每件的銷售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系是:

,該商品的日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系是,求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天?(商品的日銷售金額=該商品的銷售價(jià)格日銷售量)

【答案】日銷售金額的最大值為990元,日銷售金額最大的一天是30天中的第18天.

【解析】

在解答時(shí),應(yīng)充分考慮自變量的范圍不同銷售的價(jià)格表達(dá)形式不同,分情況討論即可獲得日銷售金額y關(guān)于時(shí)間t的函數(shù)關(guān)系式;根據(jù)分段函數(shù)不同段上的表達(dá)式,分別求最大值最終取較大者分析即可獲得問題解答.

設(shè)日銷售額為y元,則yPQ

所以

即:,

當(dāng)0<t<18時(shí),t=10,ymax=900;

當(dāng)18≤t≤30時(shí),t=18,ymax=990.

故所求日銷售金額的最大值為990元,日銷售金額最大的一天是30天中的第18天.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家通過研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問題所用的時(shí)間相關(guān),教學(xué)開始時(shí),學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開始分散,分析結(jié)果和實(shí)驗(yàn)表明,用表示學(xué)生掌握和接受概念的能力, x表示講授概念的時(shí)間(單位:min),可有以下的關(guān)系:

(1)開講后第5min與開講后第20min比較,學(xué)生的接受能力何時(shí)更強(qiáng)一些?

(2)開講后多少min學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?

(3)若一個(gè)新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時(shí)間,那么老師能否在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)概念?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)上一點(diǎn)C,過雙曲線中心的直線交雙曲線于A,B兩點(diǎn),記直線AC,BC的斜率分別為k1 , k2 , 當(dāng) +ln|k1|+ln|k2|最小時(shí),雙曲線離心率為(
A.
B.
C. +1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,⊙O1與⊙O2外切于點(diǎn)P,從⊙O1上點(diǎn)A作的切線AB,切點(diǎn)為B,連AP(不過O1)并延長與⊙O2交于點(diǎn)C.

(1)求證:AO1∥CO2
(2)若 ,求⊙O1的半徑與⊙O2的半徑之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1)證明:PB∥平面AEC;
(2)設(shè)二面角D﹣AE﹣C為60°,AP=1,AD= ,求三棱錐E﹣ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈[0, ]
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在半圓C上,半圓C在D處的切線與直線l:y= x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,求直線CD的傾斜角及D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分別是PABC的中點(diǎn),且AD=2PD=2.

(1)求證:MN∥平面PCD

(2)求證:平面PAC⊥平面PBD;

(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)為,離心率.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于,兩點(diǎn),線段的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(cosθ,sinθ),=(cosβ,sinβ).

(1)若,求的值;

(2)若記f(θ)=,θ∈[0,].當(dāng)1≤λ≤2時(shí),求f(θ)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案