【題目】如圖所示,⊙O1與⊙O2外切于點(diǎn)P,從⊙O1上點(diǎn)A作的切線AB,切點(diǎn)為B,連AP(不過O1)并延長(zhǎng)與⊙O2交于點(diǎn)C.
(1)求證:AO1∥CO2;
(2)若 ,求⊙O1的半徑與⊙O2的半徑之比.
【答案】
(1)證明:連接O1O2,則O1O2過點(diǎn)P,
∴∠O1PA=∠O2PC
∵∠O1PA=∠O1AP,∠O2PC=∠O2CP,
∴∠O1AP=∠O2CP
∴AO1∥CO2
(2)解:設(shè)AB=2t,AC= t,
由切割線定理可得AB2=APAC,
∴AP= = t,PC= t,
∴AP=2PC,
由(1)可得△O1AP∽△O2CP,
∴ = =2,
∴⊙O1的半徑與⊙O2的半徑之比為2:1.
【解析】(1)利用等腰三角形的性質(zhì),證明角相等,即可證明:AO1∥CO2;(2)由切割線定理得出AP=2PC,由(1)可得△O1AP∽△O2CP,即可求⊙O1的半徑與⊙O2的半徑之比.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)在處取得極值,且對(duì)任意, 恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AC為⊙O的直徑,D為 的中點(diǎn),E為BC的中點(diǎn).
(1)求證:DE∥AB;
(2)求證:ACBC=2ADCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一段演繹推理是這樣的: “直線平行于平面,則平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線∥平面,則直線∥直線”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋?/span> )
A. 大前提錯(cuò)誤 B. 小前提錯(cuò)誤 C. 推理形式錯(cuò)誤 D. 非以上錯(cuò)誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地有三家工廠,分別位于矩形ABCD 的頂點(diǎn)A、B 及CD的中點(diǎn)P 處,已知AB=20km,CB =10km ,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD 的區(qū)域上(含邊界),且與A、B等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO、BO、OP ,設(shè)排污管道的總長(zhǎng)度為km.
(1)按下列要求寫出函數(shù)關(guān)系式:①設(shè)∠BAO= (rad),將表示成的函數(shù);②設(shè)OP (km) ,將表示成的函數(shù).
(2)請(qǐng)選用(1)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使鋪設(shè)的排污管道總長(zhǎng)度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1 , A1C1的中點(diǎn),BC=CA=CC1 , 則BM與AN所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品在近天內(nèi)每件的銷售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系是:
,該商品的日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系是,求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天?(商品的日銷售金額=該商品的銷售價(jià)格日銷售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線C:y2=2px(p>0)于點(diǎn)P,M關(guān)于點(diǎn)P的對(duì)稱點(diǎn)為N,連結(jié)ON并延長(zhǎng)交C于點(diǎn)H.
(1)求 ;
(2)除H以外,直線MH與C是否有其它公共點(diǎn)?說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com