【題目】有一段演繹推理是這樣的: “直線平行于平面,則平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線∥平面,則直線∥直線”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋?/span> )
A. 大前提錯(cuò)誤 B. 小前提錯(cuò)誤 C. 推理形式錯(cuò)誤 D. 非以上錯(cuò)誤
【答案】A
【解析】試題分析:演繹推理的錯(cuò)誤有三種可能:一種是大前提錯(cuò)誤,第二種是小前提錯(cuò)誤,第三種是邏輯結(jié)構(gòu)錯(cuò)誤.要判斷推理過程的錯(cuò)誤原因,可以對推理過程的大前提和小前提及推理的整個(gè)過程,細(xì)心分析,不能得到正確的答案.
在推理過程“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線∥平面,則直線∥直線”中,“直線平行于平面,則平行于平面內(nèi)所有直線”是大前提,由線面平行的性質(zhì)易得,這是一個(gè)假命題,故這個(gè)推理過程錯(cuò)誤的原因是:大前提錯(cuò)誤.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)M(1,f(1))處的切線方程為
求(1)實(shí)數(shù)a,b的值;
(2)函數(shù)的單調(diào)區(qū)間及在區(qū)間[0,3]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(1)若函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)判斷函數(shù)的奇偶性并求函數(shù)的零點(diǎn);
(Ⅱ)寫出的單調(diào)區(qū)間;(只需寫出結(jié)果)
(Ⅲ)試討論方程的根的情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 =1(a>0,b>0)上一點(diǎn)C,過雙曲線中心的直線交雙曲線于A,B兩點(diǎn),記直線AC,BC的斜率分別為k1 , k2 , 當(dāng) +ln|k1|+ln|k2|最小時(shí),雙曲線離心率為( )
A.
B.
C. +1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是偶函數(shù),定義x≥0時(shí),f(x)=
(1)求f(-2);
(2)當(dāng)x<-3時(shí),求f(x)的解析式;
(3)設(shè)函數(shù)y=f(x)在區(qū)間[-5,5]上的最大值為g(a),試求g(a)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O1與⊙O2外切于點(diǎn)P,從⊙O1上點(diǎn)A作的切線AB,切點(diǎn)為B,連AP(不過O1)并延長與⊙O2交于點(diǎn)C.
(1)求證:AO1∥CO2;
(2)若 ,求⊙O1的半徑與⊙O2的半徑之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈[0, ]
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在半圓C上,半圓C在D處的切線與直線l:y= x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,求直線CD的傾斜角及D的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象過點(diǎn).
(1)求的值并求函數(shù)的值域;
(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;
(3)若為偶函數(shù),求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com