【題目】已知函數(shù).

Ⅰ)判斷函數(shù)的奇偶性并求函數(shù)的零點(diǎn);

Ⅱ)寫出的單調(diào)區(qū)間;(只需寫出結(jié)果)

Ⅲ)試討論方程的根的情況.

【答案】(Ⅰ)答案見解析;(Ⅱ)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為(-1,1);(Ⅲ)答案見解析.

【解析】試題分析:

首先確定函數(shù)的定義域,然后結(jié)合可得為奇函數(shù).

,可得函數(shù)的零點(diǎn)為-2,02.

Ⅱ)函數(shù)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為(-1,1.

結(jié)合函數(shù)的解析式繪制函數(shù)圖象,觀察圖象可得:當(dāng)時(shí),方程有一個(gè)根;當(dāng)時(shí),方程有兩個(gè)根;當(dāng)時(shí),方程有三個(gè)根.

試題解析:

函數(shù)的定義域?yàn)?/span>R,關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,

因?yàn)?/span>,

所以為奇函數(shù).

,即

解得: ,

所以函數(shù)的零點(diǎn)為-20,2.

Ⅱ)函數(shù)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為(-1,1.

由函數(shù)的解析式可得:

繪制函數(shù)圖象如圖所示,

觀察函數(shù)圖象可得:

當(dāng)時(shí),方程有一個(gè)根;

當(dāng)時(shí),方程有兩個(gè)根;

當(dāng)時(shí),方程有三個(gè)根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), .

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)如果不等式對(duì)于一切的恒成立,求的取值范圍;

3)證明:不等式對(duì)于一切的恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(a+1)lnx+ x2(a<﹣1)對(duì)任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線平面,直線平面,有以下四個(gè)命題:( )

;②;③;④;

其中正確命題的序號(hào)為

A. ②④ B. ③④ C. ①③ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AC為⊙O的直徑,D為 的中點(diǎn),E為BC的中點(diǎn).

(1)求證:DE∥AB;
(2)求證:ACBC=2ADCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2的正方形,平面ABCD⊥平面ABEF,AFBE,ABBE,ABBE2,AF1.

Ⅰ)求證:AC⊥平面BDE

Ⅱ)求證:AC∥平面DEF;

Ⅲ)求三棱錐ADEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一段演繹推理是這樣的: 直線平行于平面,則平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線∥平面,則直線∥直線的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋?/span>

A. 大前提錯(cuò)誤 B. 小前提錯(cuò)誤 C. 推理形式錯(cuò)誤 D. 非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1 , A1C1的中點(diǎn),BC=CA=CC1 , 則BM與AN所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為萬元,其中固定成本為2萬元,并且每生產(chǎn)100臺(tái)的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入滿足。假定該產(chǎn)品銷售平衡,那么根據(jù)上述統(tǒng)計(jì)規(guī)律。

(1)要使工廠有盈利,產(chǎn)品應(yīng)控制在什么范圍?

(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí)贏利最大?并求此時(shí)每臺(tái)產(chǎn)品的售價(jià)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案