【題目】已知y=f(x)是偶函數(shù),定義x≥0時(shí),f(x)=

(1)求f(-2);

(2)當(dāng)x<-3時(shí),求f(x)的解析式;

(3)設(shè)函數(shù)y=f(x)在區(qū)間[-5,5]上的最大值為g(a),試求g(a)的表達(dá)式.

【答案】(1)2; (2);(3)=.

【解析】

根據(jù)偶函數(shù)定義,可得f(-2)=f(2),代入解析式即可求解。

根據(jù)偶函數(shù)定義,可得f(x)=f(-x),代入即可求得x<-3時(shí)的解析式。

(3)由偶函數(shù)可得函數(shù)在[-5,5]上的最大值即為它在區(qū)間[0,5]上的最大值;對(duì)a分類討論,討論在對(duì)稱軸兩側(cè)的單調(diào)情況及最值即可。

(1)已知y=f(x)是偶函數(shù),故f(-2)=f(2)=2(3-2)=2;

(2)當(dāng)x<-3時(shí),f(x)=f(-x)=(-x-3)(a+x)=-(x+3)(a+x),

所以,當(dāng)x<-3時(shí),f(x)的解析式為f(x)=-(x+3)(a+x)

(3)因?yàn)?/span>f(x)是偶函數(shù),所以它在區(qū)間[-5,5]上的最大值即為它在區(qū)間[0,5]上的最大值,

①當(dāng)a≤3時(shí),f(x)在上單調(diào)遞增,在上單調(diào)遞減,所以,

②當(dāng)3<a≤7時(shí),f(x)在上單調(diào)遞增,在上單調(diào)遞減,

所以此時(shí)只需比較的大小.

(A)當(dāng)3<a≤6時(shí),,所以

(B)當(dāng)6<a≤7時(shí),,所以g(a)=

③當(dāng)a>7時(shí),f(x)在[3,5]上單調(diào)遞增,在上單調(diào)遞減,且<f(5)=2(a-5),所以g(a)=f(5)=2(a-5),

綜上所述,g(a)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(2,0),B(0,2),,O為坐標(biāo)原點(diǎn).

(1),求sin 2θ的值;

(2)若,且θ∈(-π,0),求的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線平面,直線平面,有以下四個(gè)命題:( )

;②;③;④;

其中正確命題的序號(hào)為

A. ②④ B. ③④ C. ①③ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2的正方形,平面ABCD⊥平面ABEF,AFBE,ABBE,ABBE2AF1.

Ⅰ)求證:AC⊥平面BDE;

Ⅱ)求證:AC∥平面DEF;

Ⅲ)求三棱錐ADEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一段演繹推理是這樣的: 直線平行于平面,則平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線∥平面,則直線∥直線的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋?/span>

A. 大前提錯(cuò)誤 B. 小前提錯(cuò)誤 C. 推理形式錯(cuò)誤 D. 非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把下列演繹推理寫成三段論的形式.

1)在標(biāo)準(zhǔn)大氣壓下,水的沸點(diǎn)是100℃,所以在標(biāo)準(zhǔn)大氣壓下把水加熱到100℃時(shí),水會(huì)沸騰;

2)一切奇數(shù)都不能被2整除, 是奇數(shù),所以不能被2整除;

3)三角函數(shù)都是周期函數(shù), 是三角函數(shù),因此是周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1 , A1C1的中點(diǎn),BC=CA=CC1 , 則BM與AN所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017118日開始,支付寶用戶可以通過參與螞蟻森林兩種方式獲得?ǎ◥蹏、富強(qiáng)福、和諧福、友善福、敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個(gè)社團(tuán)在年后開學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動(dòng),則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

是否集齊五福

性別

合計(jì)

30

10

40

35

5

40

合計(jì)

65

15

80

(1)根據(jù)如上的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為集齊五福與性別有關(guān)”?

(2)計(jì)算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

(3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五福活動(dòng),該大學(xué)的學(xué)生會(huì)從集齊五福的學(xué)生中,選取2位男生和3位女生逐個(gè)進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對(duì)象中至少有一位男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:

記x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),n表示購機(jī)的同時(shí)購買的易損零件數(shù).
(1)若n=19,求y與x的函數(shù)解析式;
(2)若要求“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,求n的最小值;
(3)假設(shè)這100臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買19個(gè)易損零件,或每臺(tái)都購買20個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺(tái)機(jī)器的同時(shí)應(yīng)購買19個(gè)還是20個(gè)易損零件?

查看答案和解析>>

同步練習(xí)冊(cè)答案